
SPECTRE: A Tool for Inferring, Specifying and
Enforcing Web-Security Policies

David Scott and Richard Sharp

Computer Laboratory, University of Cambridge,
William Gates Building, JJ Thompson Avenue, Cambridge CB3 0FD, UK

djs55@eng.cam.ac.uk, rws26@cl.cam.ac.uk

Abstract. Implementing web-applications securely is a laborious anderror-prone
task; as a result a large number of (professionally designed) websites suffer from
serious application-level security vulnerabilities. In this paper we describe SPEC-
TRE, a tool which helps to secure dynamic web-applications.As well as aiding
in the development process of new applications SPECTRE can also be used to fix
vulnerabilities in existing web-based components, even when the source of these
components is not available.

1 Introduction and Motivation

Application-level web security refers to vulnerabilitiesinherent in the code of a web-
application itself, (irrespective of the technologies in which it is implemented or the
security of the web-server/back-end database on which it isbuilt). Such vulnerabilities
are well-known and a number of articles have been published advising developers on
how they can be avoided. However, despite efforts to tightenapplication-level security
through code-review and other software-engineering practices, the fact remains that a
large number of professionally designed websites still suffer from serious application-
level security holes.

Examples of common vulnerabilities includeCross-Site Scripting (where sites such
as bulletin boards can be subverted through the submission of malicious content),SQL-
vulnerabilities (which allow arbitrary SQL to be executed against an application’s back-
end database) andForm-Manipulation (where maliciously modifying HTML-forms
with a text-editor can lead to unexpected data being posted to an application) [3]. The
consequences of application-level vulnerabilities are severe: hackers have tricked e-
commerce sites into shipping goods for no charge [2], usernames and passwords have
been harvested and confidential information (such as addresses and credit-card num-
bers) has been leaked [1].

A factor that contributes to the prevalence of application-level vulnerabilities in
practice is that, using existing languages and tools, it is difficult to abstract security-
related code from a large web-application in a structured manner:

– The web-application may be written in a variety of (non-interoperating) languages.
In this case there is no easy way to abstract security-related code behind a clean
API. As a consequence security-related code will be scattered throughout the ap-
plication. This lack of structure makes fixing vulnerabilities difficult: the same se-
curity hole may occur multiple times throughout the code.



– The languages used for web-development are not always conducive to writing
security-related code. In particular it is difficult to giveany compile-time guar-
antees about untyped scripting languages such as PHP and VBScript.

– Web applications often contain third-party components. Since it may not be viable
to modify the source of such components (either because the code was shipped in
binary form or because the license agreement is prohibitive) then it is not obvious
how security vulnerabilities should be fixed. In reality oneis often at the mercy of
the company who wrote the component.

In previous work we propose a framework to alleviate these problems [3]. Our system
consists of a specialised Security-Policy Description Language (SPDL) which is used
to program an application-level firewall (referred to as asecurity gateway). Security
policies are written in SPDL and compiled for execution on the security gateway. The
security gateway dynamically analyses and transforms HTTPrequests/responses to en-
force the specified policy.

In this paper we describe our implementation of these techniques in the form of
SPECTRE1: a tool for securing dynamic web-applications.

2 The SPECTRE Tool

The SPECTRE tool consists of three components: (i) a policy compiler which auto-
matically translates SPDL into code which checks validation constraints and applies
transformation rules; (ii) a security-gateway which dynamically enforces security poli-
cies and (iii) a security-policy inference engine which analyses interactions between
users and web-applications in order to automatically generate (SPDL) security-policies.
Once deployed, the SPECTRE tool can be programmed and configured using a standard
HTML interface.

Security-Policy Specification and Enforcement:The SPDL language facilitates
the definition ofvalidation constraints andtransformation rules. Validation constraints
place restrictions on the interaction between clients and web-applications (e.g. “the
value of this cookie must never be modified” or “this form-field must contain a valid
credit-card number”). Transformation rules specify various transformations which will
be applied to user-input (e.g. pass data from all fields on form, f , through a function to
escape HTML meta-characters). The details of SPDL are described fully in [3].

Figure 1 shows a screenshot of the SPECTRE User-Interface displayed using Mi-
crosoft Internet Explorer. The leftmost window (Main Configuration Settings) provides
global configuration options and lists the Cookies and URLs to be secured. The right-
most window shows the Parameter Security-Policy Form. Using this interface a de-
signer can specify validation constraints and transformation rules for individual form-
parameters, URL-parameters and cookies.

On close inspection one can see that the screenshot specifiesthe security policy for
the form-parameterCreditCardNumber. Validation constraints include bounds on
the length of data passed via the parameter, the type of data expected (e.g. string, int,

1 SPECTRE stands for: Security Policy EnforCement Through Run-timE checks.



Fig. 1. Using SPECTRE to secure an e-Commerce system

float, bool) and whether the parameter is required (requiredparametersmust be sup-
plied by the user). Facility is provided for the designer to specify validation code in a
general purpose programming language which, in our currentimplementation, resem-
bles a simply-typed subset of ML. In the screenshot the validation-code implements the
Luhn-formula, a commonly used validation check for credit-card numbers.

The transformation control (on the Parameter Security-Policy Form) allows the de-
signer to specify transformations to be applied to data received via theCreditCardNumber
parameter. Transformations are selected from a user-extensible library (currently imple-
mented in OCAML). In this example we apply transformations which (i) escape HTML
meta-characters (preventing cross-site scripting attacks); (ii) escape quotes (preventing
a class of SQL attacks); and (iii) strip spaces (removing superfluous formatting from
credit-card numbers).

The contention between the stateless nature of HTTP and the stateful nature of
many web-applications leaves application designers with the task of managing state ex-
plicitly on anad-hoc basis. A common technique (albeit an insecure one) is to thread
state through client requests and responses thus alleviating the overhead of storing state
centrally on the server-side. Cookies, URL-parameters andhidden form-fields are of-
ten used for this purpose. Although not described in detail here, the MAC validation
constraint allows data to be threaded through clients securely. Message Authentication
Codes are generated and checked dynamically to ensure that security-critical data has
not been maliciously modified by clients [3]. This protects against attacks such as the
infamousprice-changing attack [2].

The Policy Compiler translates validation/transformation rules into code to perform
server-side checking/manipulation; this code is dynamically linked into the Security
Gateway. If any of the validation constraints are violated at run-time then a descriptive



error page is returned to the client. As well as generating code for server-side checks,
the Policy Compiler also emits JavaScript for client-side validation; the Security Gate-
way dynamically inserts the JavaScript validation code into HTML-forms. In this way
validation checks are performed onboth the client-side (to improve observed latency
between form-submission and receiving validation errors)and the server-side (for se-
curity). The key benefit here is that both client- and server-side code is derived from
the same specification. Note that the reason we insert JavaScript into forms dynami-
cally (rather than inserting it statically into files in the web repository) is that many
applications use server-side code to generate forms on-the-fly.

As well as aiding the development ofnew web-applications, SPECTRE can be
used as a tool to secureexisting web-applications. SPECTRE operates completely in-
dependently of the original application source code and is therefore useful regardless of
whether the code is available or not.

Security-Policy Inference: We acknowledge that writing SPDL for large web-
applications with complex interactions between components can be a time consuming
and tedious task. To allieviate this problem we have incorporated an automatic security-
policy inference feature. When in “inference-mode” SPECTRE dynamically analyses
the interactions between a web-application and its clientsin order to generate a sim-
ple SPDL policy automatically. By analysing HTTP-requests, SPECTRE builds up a
database of URLs annotated with their associated parameters and cookies. For each pa-
rameter, the inference engine keeps track of the type of datapassed, maintains upper
and lower bounds on the length of data and records whether or not the parameter is
always present in requests for a particular URL. This information is used to construct
an SPDL skeleton which can be further refined by the designer.

References

1. CLAYTON , R., DANEZIS, G., AND KUHN, M. Real world patterns of failure in anonymity
systems. InProceedings of the Workshop on Information Hiding (2001), vol. 2137, Springer-
Verlag, LNCS.

2. INTERNETSECURITY SYSTEMS(ISS). Form tampering vulnerabilities in several web-based
shopping cart applications. ISS alert.
http://xforce.iss.net/alerts/advise42.php.

3. SCOTT, D., AND SHARP, R. Abstracting application-level web security. Tech. Rep. 2001.11,
AT&T Laboratories Cambridge, November 2001. Also submitted for publication.


