SPECTRE: A Tool for Inferring, Specifying and
Enforcing Web-Security Policies

David Scott and Richard Sharp

Computer Laboratory, University of Cambridge,
William Gates Building, JJ Thompson Avenue, Cambridge CBB QUK
dj sb5@ng. cam ac. uk, rws26@l .cam ac. uk

Abstract. Implementing web-applications securely is a laboriouseanar-prone
task; as a result a large number of (professionally desigwetsites suffer from
serious application-level security vulnerabilities. histpaper we describe SPEC-
TRE, a tool which helps to secure dynamic web-applicatidsswell as aiding
in the development process of new applications SPECTREIlsarba used to fix
vulnerabilities in existing web-based components, eveanthe source of these
components is not available.

1 Introduction and Motivation

Application-level web security refers to vulnerabilitieserent in the code of a web-
application itself, (irrespective of the technologies ihigh it is implemented or the
security of the web-server/back-end database on whiclbitil). Such vulnerabilities
are well-known and a number of articles have been publisketiag developers on
how they can be avoided. However, despite efforts to tighfgplication-level security
through code-review and other software-engineering prest the fact remains that a
large number of professionally designed websites stillesiffom serious application-
level security holes.

Examples of common vulnerabilities inclu@eoss-Site Scripting (where sites such
as bulletin boards can be subverted through the submissioalicious content)SQL-
vulnerabilities (which allow arbitrary SQL to be executed against an appboés back-
end database) anbrm-Manipulation (where maliciously modifying HTML-forms
with a text-editor can lead to unexpected data being posted application) [3]. The
consequences of application-level vulnerabilities anese hackers have tricked e-
commerce sites into shipping goods for no charge [2], useessand passwords have
been harvested and confidential information (such as askelsesnd credit-card num-
bers) has been leaked [1].

A factor that contributes to the prevalence of applicatierel vulnerabilities in
practice is that, using existing languages and tools, itfficdlt to abstract security-
related code from a large web-application in a structuredmea

— The web-application may be written in a variety of (non-iofeerating) languages.
In this case there is no easy way to abstract security-cbledde behind a clean
API. As a consequence security-related code will be seattérroughout the ap-
plication. This lack of structure makes fixing vulnerald difficult: the same se-
curity hole may occur multiple times throughout the code.

— The languages used for web-development are not always civedto writing
security-related code. In particular it is difficult to gieey compile-time guar-
antees about untyped scripting languages such as PHP anttigBS

— Web applications often contain third-party componentsc8iit may not be viable
to modify the source of such components (either becauseotthe was shipped in
binary form or because the license agreement is prohibitiven it is not obvious
how security vulnerabilities should be fixed. In reality aa@ften at the mercy of
the company who wrote the component.

In previous work we propose a framework to alleviate thesdblams [3]. Our system
consists of a specialised Security-Policy Descriptiondisage (SPDL) which is used
to program an application-level firewall (referred to aseaurity gateway). Security
policies are written in SPDL and compiled for execution oa security gateway. The
security gateway dynamically analyses and transforms HEfRBests/responses to en-
force the specified policy.

In this paper we describe our implementation of these teghes in the form of
SPECTRE: a tool for securing dynamic web-applications.

2 The SPECTRE Tool

The SPECTRE tool consists of three componenjsa policy compiler which auto-
matically translates SPDL into code which checks validatonstraints and applies
transformation rules;ii) a security-gateway which dynamically enforces security poli-
cies and ifi) a security-policy inference engine which analyses interactions between
users and web-applications in order to automatically geedSPDL) security-policies.
Once deployed, the SPECTRE tool can be programmed and coedigsing a standard
HTML interface.

Security-Policy Specification and EnforcementThe SPDL language facilitates
the definition ofvalidation constraints andtransformation rules. Validation constraints
place restrictions on the interaction between clients aet-applications (e.g. “the
value of this cookie must never be modified” or “this form-fiehust contain a valid
credit-card number”). Transformation rules specify vadgdransformations which will
be applied to user-input (e.g. pass data from all fields omfgr, through a function to
escape HTML meta-characters). The details of SPDL are ithestfully in [3].

Figure 1 shows a screenshot of the SPECTRE User-Interfapéagied using Mi-
crosoft Internet Explorer. The leftmost window (Main Configtion Settings) provides
global configuration options and lists the Cookies and URLIsd secured. The right-
most window shows the Parameter Security-Policy Form. ¢J¢lms interface a de-
signer can specify validation constraints and transfoienatules for individual form-
parameters, URL-parameters and cookies.

On close inspection one can see that the screenshot spéuifisscurity policy for
the form-paramete@r edi t Car dNunber . Validation constraints include bounds on
the length of data passed via the parameter, the type of dptceed (e.g. string, int,

! SPECTRE stands for: Security Policy EnforCement Through-BuE checks.

& -2, -8 B a|@ o 8[2 3 =
He Edt Vew Favortss Tods Hep ‘J Back@ Forpar d) Stop Refresh Home Search Favorites History Mail Print jd\tﬁ
Adiress [@] iy , el B
B at [E] o =
Back Forward Stop Refresh Home Search Favorites History Mail Prink
dress [&] ey ! il Parameter Security Policy

URL: | httpffwwe, example. com/purchase/cart.asp

Security Gateway / Policy Inference E

Parameter: | CreditCardNumber

Method: | POST

About | Software Version Click here t Maength lm—
Security Gateway Statistics URL
MinLength: |[T6
View System EventLog http:ffwarw. example. com/pL
Re d: || ves ¥l
Reset System Event Log ‘http:f e, example. comipu edue =

Titpfwww. example. corm/pr Mac o 5

Global Configuration it exaaple. corafint Type: |[sting =

Secuity Gateway Status: | & On [et
£ Off (passthrough riode) Tun £iEot (93508 1ng) :StEdng - S ing.mid (5, 1,13
hitpi o example. comiat un rest (sistring) string

String.mid(s,2,String. lengeh(s) -1)

Unlnown URL Action | & Add to SPDL Palicy
Validation Code: Tun double [s:string,a:bool) istring =
€ Generate Error Lt gemn them mn
On Detecting Viclation: | [& Log N else String.fromInt (Inc.fromString(first(s)]*2))
I Gonsrate Brror Click here to ++ (double (rest (s), not all
Cookie
Updete Confi i EscapeHTHL | EscapeQuotes | Strip3pace
pdate Corfiguration o Transformations

HIML Encode: ||Yes »

Update Parameter Palicy

Fig. 1. Using SPECTRE to secure an e-Commerce system

float, bool) and whether the parameter is required (requie@metersnust be sup-
plied by the user). Facility is provided for the designer peaify validation code in a
general purpose programming language which, in our cuineplementation, resem-
bles a simply-typed subset of ML. In the screenshot the &tibd-code implements the
Luhn-formula, a commonly used validation check for cremitd numbers.

The transformation control (on the Parameter Securityel (lorm) allows the de-
signer to specify transformations to be applied to dataivedevia theCr edi t Car dNunber
parameter. Transformations are selected from a user-gkteribrary (currently imple-
mented in OCAML). In this example we apply transformatiorgah () escape HTML
meta-characters (preventing cross-site scripting asjagk) escape quotes (preventing
a class of SQL attacks); andi} strip spaces (removing superfluous formatting from
credit-card numbers).

The contention between the stateless nature of HTTP andtakefid nature of
many web-applications leaves application designers \uittdsk of managing state ex-
plicitly on anad-hoc basis. A common technique (albeit an insecure one) is tathre
state through client requests and responses thus allayide overhead of storing state
centrally on the server-side. Cookies, URL-parametershadden form-fields are of-
ten used for this purpose. Although not described in detiéhthe MAC validation
constraint allows data to be threaded through clients sécuMessage Authentication
Codes are generated and checked dynamically to ensuresthaityg-critical data has
not been maliciously modified by clients [3]. This proteaggimst attacks such as the
infamousprice-changing attack [2].

The Policy Compiler translates validation/transformatioles into code to perform
server-side checking/manipulation; this code is dynalyidmked into the Security
Gateway. If any of the validation constraints are violatedua-time then a descriptive

error page is returned to the client. As well as generatirdedor server-side checks,
the Policy Compiler also emits JavaScript for client-sidéidation; the Security Gate-
way dynamically inserts the JavaScript validation code HHTML-forms. In this way
validation checks are performed dwoth the client-side (to improve observed latency
between form-submission and receiving validation errarg) the server-side (for se-
curity). The key benefit here is that both client- and seside code is derived from
the same specification. Note that the reason we insert Jagasto forms dynami-
cally (rather than inserting it statically into files in theelw repository) is that many
applications use server-side code to generate forms ofiythe

As well as aiding the development aéw web-applications, SPECTRE can be
used as a tool to secuezisting web-applications. SPECTRE operates completely in-
dependently of the original application source code anldeésgfore useful regardless of
whether the code is available or not.

Security-Policy Inference: We acknowledge that writing SPDL for large web-
applications with complex interactions between composieah be a time consuming
and tedious task. To allieviate this problem we have incafsal an automatic security-
policy inference feature. When in “inference-mode” SPEETd@/namically analyses
the interactions between a web-application and its clientsrder to generate a sim-
ple SPDL policy automatically. By analysing HTTP-requeSSIBECTRE builds up a
database of URLs annotated with their associated parasragtdrcookies. For each pa-
rameter, the inference engine keeps track of the type of pkedaed, maintains upper
and lower bounds on the length of data and records whetheotothe parameter is
always present in requests for a particular URL. This informatislused to construct
an SPDL skeleton which can be further refined by the designer.

References

1. CLAYTON, R., DANEZIS, G., AND KUHN, M. Real world patterns of failure in anonymity
systems. IrProceedings of the Workshop on Information Hiding (2001), vol. 2137, Springer-
Verlag, LNCS.

2. INTERNETSECURITY SYSTEMS(ISS). Form tampering vulnerabilities in several web-lohse
shopping cart applications. ISS alert.
http://xforce.iss.net/alerts/advise42. php.

3. ScotT, D., AND SHARP, R. Abstracting application-level web security. Tech. Ref01.11,
AT&T Laboratories Cambridge, November 2001. Also subndifier publication.

