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Abstract

Mobile Applications are programs which are able to
move themselves between hosts on the network. Sentient
Applications are programs which can exploit the existence
of pervasive networked sensor devices to observe their en-
vironment and react accordingly. We believe that properly
designed and constrained Sentient Mobile Applications pro-
vide a good foundation for building applications for perva-
sive computing environments.

The aims of this work are threefold: (i) motivate the use
of Sentient Mobile Applications in next-generation perva-
sive computing environments; (ii) describe the role of policy
in building Sentient Mobile Applications; (iii) demonstrate
the need for policy to control Sentient Mobile Applications
once they have been deployed.

1 Introduction

The goal of pervasive computing is to create systems
that disappear [22]—systems that fade into the background
leaving users free to concentrate on their own tasks rather
than explicitly “using the computer”. Sentient Computing
works towards this goal by adding perception to software;
applications become more responsive and useful by observ-
ing and reacting to their physical environment [12]. The
ability to sense the location of people and objects is an im-
portant building-block of such sentient systems. One of the
most natural ways a program can react to user movement
is to move itself around the network. Such Sentient Mobile
Applications open up a number of tantalising possibilities,
including: (i) exploiting resources near to the user’s current
location (e.g. multimedia hardware, keyboards and mice);

(ii) supporting the illusion that user applications and their
state is omnipresent [10] – allowing a user to use any appli-
cation from any location; and (iii) maximising efficiency by
spreading resource-intensive tasks to where resources are
underused.

Unfortunately the use of Sentient Mobile Applications
also presents several difficult challenges including the fol-
lowing problems: (i) how do we write applications so they
are not tied closely to the specific sensing technology being
used; (ii) how do we structure mobile applications to max-
imise flexibility, analysability, code-reuse; and (iii) how do
we monitor and constrain mobile code-based applications
once they have been let loose?

For the benefits of Sentient Mobile Applications to be
realised we must confront these challenges; we require both
a simple sensor technology-neutral mechanism for users to
specify the behaviour of their own agents (to make them be
good citizens of the pervasive computing world) whilst al-
lowing people to constrain the behaviour of foreign agents
operating in their space: in their office or with their re-
sources.

In previous work [18] we described an abstract math-
ematical model of the world intended to describe the be-
haviour of Sentient Mobile Applications. This work is sum-
marised in Section 2.2. We also described a modal-logic
based language for creating security assertions about that
world, which we summarise in Section 5.1. In this paper we
focus on the practical aspects of implementing our system
and of the role of policy in both designing and deploying
real Sentient Mobile Applications. We present a scheme for
expressing per-application mobility policies enabling appli-
cations to automatically react to changes in their environ-
ment. We describe a mechanism for expressing global se-
curity policies enabling users to control the behaviour of
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applications “in the wild”. We show how conflicts between
users may occur and we describe a suitable conflict resolu-
tion metapolicy for resolving these differences.

The remainder of this paper is structured as follows:
Section 2 outlines the some useful background informa-
tion to this project and Section 3 describes our motivation
for applying policy techniques to the problem. Section 4
describes building applications with an abstracted mobil-
ity policy while Section 5 motivates the need for a global
mobility policy mechanism and describes our proposal. A
description of related work may be found in Section 6, fu-
ture directions are discussed in Section 7 and Section 8 con-
cludes.

2 Background

In this section we define the term Sentient Mobile Ap-
plication and describe the spatial model on which we base
our policy mechanisms. For completeness we briefly dis-
cuss the low-level sensor system we use to keep our spa-
tial model up to date and we describe some middleware
which abstracts away the low-level details of different sen-
sor systems behind a common interface, based on our spa-
tial model.

2.1 Sentient Mobile Applications

We start by defining a Sentient Mobile Application as a
mobile piece of software which is able to observe its en-
vironment in both a physical and virtual (or “electronic”)
sense, adjusting its behaviour accordingly. Changes to the
physical environment (e.g. when the laptop containing the
program is moved to a different room) are observed by
network-attached sensors assumed to be permeating the
world while changes to the virtual environment (for in-
stance when a user runs another program on the same com-
puter) are observed by custom system software running on
the host computer itself. In response to these observations,
an application may react in a number of different ways in-
cluding anything from playing a sound through a pair of
computer-attached speakers to migrating completely to an-
other host.

In order to be generally useful, such environmentally-
aware applications require a sensor- and application
domain-neutral model of the world, on which to base their
reactions. We have designed a simple model for this pur-
pose which is inspired by the theoretical concept of an am-
bient [2]. An ambient is simply defined as a bounded place
(anything from a virtual machine to a physical room) where
computation happens. In our model we use this concept
to combine together data from physical sensors (such as the
observation that “the laptop is in the meeting room”) as well
as data from computers (such as “the music playing agent is

running on the laptop”) in one single system, described in
the following section.

2.2 Describing Spaces

We model the world as a tree of nested entities, analo-
gous to ambients in the Ambient Calculus. We divide our
entities into sorts each representing a different kind of ob-
ject. We have predefined the following set of sorts, useful
for modelling a typical office environment:

room: a physical volume of space corresponding to build-
ings, floors, corridors, offices, cupboards etc.

person: an autonomous physical entity (e.g. a human or a
robot) with the ability to move between rooms

workstation: an immovable physical object which can
host computer processes

laptop: a mobile physical object which can host computer
processes

context: a (possibly virtual) machine capable of running
mobile code

agent: a piece of mobile code

Note that this list is by no means exhaustive; it is possible to
define sorts specific to the application being modelled. For
example, it would be sensible to define a sort aircraft for
an application designed for the aviation industry.

Sorts are used to constrain how entities may nest. The
sorts defined above constrain nesting in the following way:
room entities may nest only in other room entities (e.g. a
cupboard within an office or an office within a building).
Physical objects such as person, laptop and workstation
entities may nest within room entities. laptop entities may
nest within (i.e. be carried by) person entities. context enti-
ties may only nest within other context entities or computer
devices (laptop and workstation entities). Finally, appli-
cation code, represented by agent entities, may only exist
within a context (every computer is assumed to have at least
one context: that provided by its native operating system).

By way of example, consider a simple environment con-
taining people (named Alice, Bob and Charlie), offices
(Bob’s office and Charlie’s office), computers (a PC and two
laptops) and several mobile agents (including one called
“music player”). A graphical depiction of the model cor-
responding to this world at a particular time is displayed in
Figure 1. Note the following things about this model:

• Alice is carrying a laptop inside Charlie’s office. This
laptop is running a pair of mobile applications (in this
case both are called “agent”).



• The PC in Charlie’s office has been configured with
an extra context called “audio”. Charlie has associ-
ated this context with the permission to play sound on
the computer’s associated sound hardware; this per-
mission has been granted to the agent “music player”
nested within.

2.3 Dynamically Updating the Spatial Model

To bridge the gap between our abstract spatial model and
real-life location systems we have built a distributed Java
application, called the World Modelling Service (WMS). In
order to be generally useful, the WMS is not specialised
to one particular location system but rather is designed to
be location-technology agnostic. To support a new loca-
tion system one must write a small adaptor module which
converts the native notions of space and location onto the
entities supported by the WMS. We currently use two such
adaptors: A “Spirit Adaptor” and an “Aglet Adaptor”.

The Spirit [1] system is a piece of location-monitoring
middleware developed originally at AT&T Laboratories
Cambridge. Its primary function is to take a stream of
raw location events received from a network of sensors
and combine these with a spatial database to produce and
disseminate high-level location events concerning people
and objects within the lab. Objects to be tracked are
equipped with Active-Bat [21] devices — radio-triggered
ultrasound-emitting location tags. The clients of the sys-
tem are location-aware applications, for example the “active
map” program which displays a top-down view of an office
complete with the positions and orientations of people and
equipment, updated in real time.

Spirit has a spatial indexing engine capable of generating
events whenever tracked “regions” overlap (e.g. when the
space occupied by a person intersects with a zone around
a workstation). The first task of the WMS Spirit adaptor is
to provide a mapping between these volumes of 3D space
and specific entities in the entity hierarchy. An example
of such a mapping is shown in Figure 2. The bottom half
of the figure shows the output of the active-map applica-
tion monitoring two rooms — “Room 9” and “Room 10”.
The Spirit adaptor has associated these rooms, two people
(userid “kjm25” and “acr31”) and a pair of workstations
with entities inside the WMS.

Once the mapping is established, the Spirit adaptor lis-
tens for high-level events from the Spirit system (such as
“user kjm25 has left Room 9”) and makes the correspond-
ing changes in the WMS.

The Aglet adaptor1 allows us to track the locations of
Mobile Agents as they migrate from host to host. Com-
bined with the Spirit adaptor, this allows us to simultane-

1The word “Aglet” (coined by IBM) is a cross between the word
“Agent” and the word “Applet”.
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Figure 2. An example of the mapping between
Spirit objects (bottom) and WMS entities (top)
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ously monitor the positions of all people, computers and
applications in our environment.

3 Overview

Our Sentient Mobile Applications are based on Mobile
Agents – pieces of code which have the ability to sponta-
neously migrate themselves between hosts on the network.
Although the ability to migrate at will is very powerful, it is
quite difficult to use in practice; it has been observed [14]
that the agent migration primitive is similar in spirit to the
go-to programming statement which has a reputation for
allowing confusing programs to be written [7].

3.1 The Role of Policy

In order to reduce confusion to a minimum we propose
that all mobility aspects of an application should be ab-
stracted out and written as separate policy documents. This
has a number of advantages over simply writing the appli-
cation logic and the mobility policy together. Specifically it
enables us to

• increase code reuse through being able to share the
same mobility policy amongst several different appli-
cations;

• make debugging easier since the code is not tangled up
with the main application logic; and

• retrofit mobility on top of existing non-mobile applica-
tions without having to extensively modify the existing
code base.

We apply policy in the following contexts:

• applications are deployed with an individual mobility
policy (referred to as “per-application mobility pol-
icy”), described in Section 4;

• users provide global assertion-based policies which
apply to arbitrary applications and spatial regions (re-
ferred to as “system-level policy”), described in Sec-
tion 5); and

• a spatially-based Conflict Resolution metapolicy deals
with conflicts between policies and is described in Sec-
tion 5.4.1.

The diagram in Figure 3 shows where these policy pieces
sit in relation to each other and how they interact. Each
application’s individual mobility policy decides when and
where to migrate the application in response to observations
of the spatial model. These migration requests are sent to
the system where they are checked for consistency with the
installed system-level policies. If the system-level policies

Application 1

Mobility
Policy 1

Application 2

Mobility
Policy 2

System-level 
Mobility
Policy

System Code

User Code

Conflict
Resolution
Policy

System-level 
Mobility
Policy

Figure 3. An overview of the system empha-
sising the role of policy. In the diagram the
mobility policy of Application 1 emits a mi-
gration request. This request is checked
against the system-level policies before be-
ing granted.

conflict with each other then the conflict resolution metapol-
icy makes the final decision on whether to allow the migra-
tion request or not.

4 Per-Application Mobility Policies

For maximum flexibility we represent per-application
mobility policies directly as classes in the Java program-
ming language. Over time, we hope to build up a com-
prehensive library of such classes to facilitate the rapid de-
velopment of future applications. On creation, a mobility
policy object is handed two references by the system: one
to the WMS which allows the object to observe changes to
the spatial model and a second reference to an “Application
Manager” object which allows it to dynamically control the
behaviour of the application by asking it to stop, start and
migrate. The following sections describe this mechanism in
more detail by means of a series of simple examples.

4.1 Example: The Follow-Me Policy

The “Follow-Me” policy instructs the application to
physically follow a particular user around. Whenever the
user leaves a room, the application stops running. When-



ever the user enters a new room, the application migrates
to a host in the new room and continues where it left off.
This mobility policy is useful in a number of contexts, for
example

• migrating a user’s desktop to a terminal near their cur-
rent physical location (a process known as “teleport-
ing” [17]) to ensure that user applications are always
easily accessible; and

• ensuring that a music playing program is always play-
ing music that the user can physically hear, by migrat-
ing to a computer in the same room.

Java-like pseudocode for the Follow-Me policy may be
written as follows:

public class FollowMe{
...
public FollowMe(WMS spatial_model,

Manager manager,
Entity me) {

spatial_model.addCallback(this);
...

}

Entity findNearbyComputer(Entity x){
// returns an entity near "x"
// capable of running the
// application

}

public entityLeft(who, where){
if (who.equals(me)){
manager.stop();

}
}
public entityArrived(who, where){

if (who.equals(me)){
Entity x=findNearbyComputer(where);
manager.migrate(x);

}
}

}

In the constructor the FollowMe object registers itself
with the WMS. When entities change location in the
spatial model the two callback methods entityLeft
and entityArrived are executed on the policy ob-
ject. Note that in the Follow-Me policy only events re-
lating to the user being tracked are relevant and all other
events are silently ignored. When the tracked user leaves
his/her current room, the entityLeft method calls the
manager.stop method which requests that the applica-
tion stop executing. When the tracked user enters another

room, the entityArrived method attempts to migrate
the application to a new computer, located inside the user’s
new room.

4.2 Example: The When-No-one’s-Here Policy

This policy is useful for running long-term non-
interactive tasks on otherwise idle computers. Whenever
a user enters a room with one of these applications, the ap-
plication is paused to prevent any possible degradation of
the quality of service to the user. Only when the last person
leaves the room is it safe for all such background tasks to be
restarted.

Java-like pseudocode for this policy may be written as
follows:

public class WhenNooneHere{
...
public WhenNooneHere(WMS spatial_model,

Manager manager,
Entity where) {

spatial_model.addCallback(this);
...
}

int countPeopleHere() {
// return number of people in
// same room as me

}

public entityLeft(who, where){
if ( (manager.amStopped()) &&

(countPeopleHere() == 0) )
manager.start();

}
public entityArrived(who, where){

if ( (manager.amRunning()) &&
(countPeopleHere() > 0) )

manager.stop();
}

}

The utility function countPeopleHere returns the
number of people in the same room as the application. The
entityLeft and entityArrivedmethods use this in-
formation to decide whether or not to let the application ex-
ecute.

5 System-level policy

As so far described, Sentient Mobile Applications, al-
though potentially very useful, have also some inherent



drawbacks. Since applications know about the configura-
tion of both the physical world (i.e. the locations of peo-
ple and other physical objects) and the “virtual” world of
computer resources, a user could deliberately write an ap-
plication which performs a Denial Of Service (DOS) at-
tack against either people or computers. Such an applica-
tion could, for example, follow a particular user around and
play loud music on nearby speakers to prevent them talk-
ing to anyone. Alternatively a malicious application could
be designed to use up all computer resources belonging to
a particular group of people, to reduce their productivity.
Therefore as an unfortunate side-effect of building infras-
tructure to produce more useful (more “sentient”) applica-
tions we have additionally created many more opportunities
to wreak havoc.2

To prevent anarchy, it is essential to provide some way
to constrain the activities of mobile applications; we must
have some way of imposing system-wide policies to restrict
their behaviour. Unless such a mechanism is put in place, it
is highly likely that sentient mobile applications will never
be widely deployed due to fears over their safety.

To address this need, we propose a second, complemen-
tary, spatial policy-based mechanism (called SpatialP)
to constrain the behaviour of mobile applications. This
framework provides users with an easy, comprehensive way
to restrict and monitor the activities of applications within a
suitably augmented environment. By using location-based
policies we hope to exploit structure which users are already
familiar with. People are used to security policies govern-
ing physical spaces (e.g. “no unauthorised personel are al-
lowed in this area”); we extend this idea seamlessly into
the ethereal world of mobile applications. The following is
summarised from our FASE’03 paper [18].

5.1 Policies in SpatialP

A security policy in SpatialP is defined as a 4-tuple

〈location , formula , times , onfail 〉

where location is an expression designating a set of specific
entities where the assertion given by formula should hold.
The system will block actions (e.g. agent creation or migra-
tion) which would violate the policy. If, with respect to the
time period described by times , the assertion becomes vio-
lated (e.g. by the physical movement of an object) then the
system will attempt to execute the command described in
the field onfail .

We define a path as an ordered sequence of entity names
which uniquely specify a single entity using the nesting re-
lation, ↓. We say that a ↓ b if b is a child of a, i.e. b is

2This problem is not unique to our system; it is an unfortunate fact of
life that when features are added to a system, they may often be used for
“evil” as well as “good”.

contained within one level of nesting of a. Therefore a path
p = a1 . . . an names an entity if a1 ↓ a2 ∧ . . . ∧an−1 ↓ an.
For example, in the diagram in Figure 1 a sequence of en-
tity names uniquely specifying the entity music player
could be written

[ World, Charlie’s office, PC,

audio, music player ]

The policy field location is used to quantify over a set
of entities. In our system these sets are described by a form
of regular expression. We first define the ↓∗ operator as the
reflexive transitive closure of ↓ and then write the syntax of
location expressions as follows:

element ← η (entity name)
| {η, η} (alternation)
| * (any)

location ← element (root)
| location/element (direct nesting)
| location/.../element (transitive nesting)

We define the matching set of a location l as the set of paths
paths where ∀p ∈ paths (with p = a1, . . . , an)

• every step e1/e2 in l corresponds with a step a1 ↓ a2

where the element e1 matches a1 and e2 matches a2;

• every step e1/.../e2 in l corresponds to a sequence
of steps a1 ↓ . . . ↓ an for some n where the element
e1 matches a1 and e2 matches an;

• the element {η1, η2} matches the entity with name η if
η1 = η or η2 = η;

• the element * matches any entity; and

• the trivial path element η matches an entity with name
η.

Therefore the location field allows us to

• concisely name entities whose paths diverge at a point
(using alternation) e.g. a/{b, c} matches the same en-
tity as a/b and a/c;

• have paths with dislocations (using /.../) e.g.
a/.../b can match the same entities as a/b as well
as a/c/d/b; and

• quantify over entities without naming them e.g. a/*
can match the same entities as a/b, a/c and a/d.

The location field provides a similar function to that of
XPath [4], used for naming elements of XML documents.

The policy field times can contain one of two possi-
ble types of values: Always(t) and Sometime(from , to, t).



In both cases the parameter t specifies how much “reac-
tion” time the system has before the policy onfail action
is executed. The value Always(t) indicates that the pol-
icy formula should hold for all time during which the
system is running. Any violation will trigger the onfail

action after the reaction t time has elapsed. The value
Sometime(from , to, t) states that the formula should hold
at some point in the time interval between the times from

and to. This is similar to the concept of obligation in tra-
ditional Role-Based Access Control (RBAC) systems i.e.
stating that someone should perform some action at some
point [6].

The policy field onfail specifies an action to take should
the policy be violated. The action can of the following
types:

• Log(message) causes a message to be written to a log;

• Kill(location) asks the system to terminate agents
identified by the path location ;

• Freeze(location) requests the agents identified by
location be temporarily suspended; and

• Create(agent) which requests that the system create
the agent named by agent .

For both the Kill and Freeze values we adopt the conven-
tion that if the location expression has a missing initial el-
ement (i.e. it starts with / or /.../) we automatically re-
place the first element with the full path to the specific en-
tity the formula is currently being applied to. For example
if the policy location field is a/* and the policy is violated
at a/b then the onfail expression Kill /c is expanded to
Kill a/b/c i.e. a request to terminate the only entity named
by a/b/c and not a/*/c. This ability to refer to previously
matched data in a pattern is also found in other systems us-
ing regular expressions, e.g. perl [20].

The policy field formula contains an expression writ-
ten in a simple spatial modal logic similar to the Ambient
Logic [3]. The syntax may be written as follows, where η

ranges over entity names:

formula ← T (true)
| ¬formula (negation)
| formula ∨ formula (disjunction)
| 0 (void)
| η[formula ] (named location)
| formula | formula (composition)
|

�
f (somewhere)

F
4

= ¬T (false)
a ∧ b

4

= ¬(¬a ∨ ¬b) (conjunction)
�

a
4

= ¬
�
¬a (everywhere)

These constructs may be familiar to those versed in
modal logics, but we summarise their meaning in the fol-
lowing section.

5.2 Satisfaction

We say that an entity a satisfies the logical formula f (i.e.
the formula f holds at a) by writing a |= f . Intuitively, we
may think of a formula f as matching an entity a if a |= f .
The relation, |= is defined informally as follows:

• a |= T for any entity a

• a |= ¬f if a |= f does not hold

• a |= f ∨ g if either a |= f or a |= g hold

• a |= 0 if a is “nothing” i.e. the absence of anything
(note that η[¬0] holds of an entity if the entity con-
sists of the place η and η has at least one entity nested
within.)

• a |= η[f ] if a ≡ n[M ] and η = n and M |= f

• a |= f | g if a ≡ N |M and f |= N and g |= M

• a |=
�
f if ∃b.a ↓∗ b and b |= f

For example, the formula 0 only matches “nothing” (or
“void”) i.e. the absence of anything. The formula f | g

matches a if a can be written as the composition of two ex-
pressions N and M such that f matches N and g matches
M . The formula

�
f matches a if there is an entity b some-

where in the tree rooted at a where b matches f .

5.3 Policy Examples

In this section we briefly demonstrate the kinds of poli-
cies expressible in SpatialP by means of a simple ex-
ample, based in the fictional office environment modelled
in Figure 1. Imagine the scenario where the user “Alice”
has just written a “Follow-me” Sentient Mobile Application
(called music player) which is programmed to follow
Alice, playing music wherever she goes. In order to monitor
the agent, Alice installs a system-wide spatial policy (note
that this policy only passively logs events) like the follow-
ing:

〈 location = World,

formula =
�
(Alice[T] |

�
music player[T] | T),

times = Always(10 seconds),
onfail = Log 〉

(1)



The policy asks the system to continuously monitor the
spatial formula (given by the formula field) against the en-
tity called World (which in this case is the root of the en-
tity hierarchy) and to write a message to a log file if the
formula is violated for more than 10 seconds. The choice of
10 seconds is a bit arbitrary but should be a reflection of the
latency inherent in the system i.e. the delay between Alice
moving and the application noticing and following her. The
formula may be interpreted as follows:

• The subformulaAlice[T] matches the entity Alice,
with any sub-entities (recall that the formula T
matches anything). In real-world terms, this means
“Alice, who may or may not be carrying anything”.

• The subformula
�
music player[T] matches an en-

tity if the music player entity is somewhere in-
side.

• The subformula Alice[T] |
�
music player[T] |

T matches if the entity Alice is present and
the music player is somewhere inside an entity
nearby (note the final | T indicates that other entities
may also be present); and so therefore

• the whole formula
�
(Alice[T] |

�
music player[T] | T) matches an entity

if Alice is somewhere inside and the music
player is somewhere inside the space next to her,
independent of any other entities being present.

Consider a second user, Bob, who would rather have
peace and quiet where he works. To prevent wandering mu-
sic playing agents disturbing him he writes a rule:

〈 location = World/*,

formula =
�
¬Bob[T] ∨ (

�
Bob[T]

∧
�
¬audio[¬0] ) ,

times = Always(3 seconds),
onfail = Freeze /.../audio/* 〉

(2)
The policy location field World/* causes the rule

to be applied to all children of the entity named
World, i.e. in the diagram in Figure 1 this corre-
sponds to all the offices, World/Bob’s office and
World/Charlie’s office. The same formula is ap-
plied individually to each of these entities. The formula

�
¬Bob[T] holds if the entity Bob is nowhere inside the

office; the formula
�
Bob[T] holds if the entity Bob is

somewhere inside the office and the formula
�
¬audio[¬0]

holds if there is not a non-empty audio context anywhere
within the office. Taken together, the whole formula may
be read as

Either Bob is not inside the office concerned (in
which case there is no violation) or he is inside
the office but there is no sound playing.

If the policy is violated in the office named x then the onfail
action is expanded to Freeze World/x/.../audio/*
causing audio playing agents inside office x to be frozen.

5.4 Policy Conflict

Clearly there is scope for policies, written by different
people, to come into conflict. In the above music player
example, Alice’s FollowMe policy will come into conflict
with Bob’s policy if Alice and Bob are in the same room
together. We need a conflict resolution algorithm to decide
which of them will “win”. Should the music be allowed to
play or should the peace be kept?

5.4.1 Example: Spatial Conflict Resolution Strategy

We observe that, in a typical office environment, resources
tend to be associated with particular people: individuals are
associated with their own offices and managers are asso-
ciated with sets of offices (each associated with individ-
ual subordinates). It would be considered inappropriate for
one person to enter another person’s office and play loud
music without their consent; the person entering would be
expected to follow the guidelines set down by the office’s
“owner” while in “their” space. Additionally, if the “boss”
banned all music playing in offices then we would expect
that rule to take precedence over the desires of everyone
else.

Our example conflict resolution strategy follows these
principles. We associate entities in our WMS with sets of
users. We adopt the convention that policies belonging to a
person associated with an entity nearer the root of the hier-
archy override those of people further down. So, for exam-
ple, if we associate the root entity with the “boss” then their
wishes will always override everyone elses, while individ-
ual users are still able to set local policies controlling their
own spaces.

So, in the case of Alice and Bob it depends on where
the policies come into conflict. Assuming Alice and Bob
are both at the same level in a company then if Alice visits
Bob in his office then his policy will override Alice’s and
there will be silence. On the other hand if Bob visits Alice
in her office then her policy will override his and the music
will continue playing. If they meet in neutral territory (e.g.
someone else’s office) then there is no clear winner. The
system will take no action in this case; it is up to the owner
of that space to decide which policy should take priority.



6 Related Work

Separately specifying application concerns (i.e. proper-
ties or areas of interest) and then using some mechanism
to compose the fragments back together is the main idea
behind recent research into Aspect-Oriented Programming
(AOP) [9]. Applying this principle to separate out the mo-
bility aspect from a mobile agent application has been con-
sidered before. FarGo [11] aimed to cleanly separate the
application logic from its “layout” i.e. the dynamic loca-
tions of the code components. It provided a method for
dividing code up into modules and then separately speci-
fying how the modules must be located. Lauvset et al [14]
further suggest factoring agents into “function”, “mobility”
and “management” aspects. Montanari et al [15] propose
using obligation policies in Ponder [5] to compel agents to
move in response to external stimuli. Our system is unique
in that it allows users to create policies in terms of both
“physical” and “virtual” spaces. We believe that this fusion
allows the creation of both useful and easily understandable
policies.

Retrofitting mobility onto existing applications has been
used before by other systems. The Sprite [8] project al-
lows processes to be transparently migrated to other (idle)
machines by transferring state (e.g. virtual memory) across
the network. Sprite has the built-in notion that users “own”
their workstations and would automatically evict foreign
code when the owning user logs in on the computer. This
is one of many possible policies which can be written us-
ing our system. For example, rather than waiting for the
user to complete the log-in process (which might take some
time due to a high load on the machine) we can write poli-
cies which preemptively evict other processes when the user
first arrives in the room.

Jiang and Landay [13] consider risks to privacy in
context-aware systems. They base their work on the ab-
straction of information spaces, similar to our entities. They
envisage a system where documents have associated pri-
vacy tags which are used to prevent the unwanted leakage
of data. They do not specifically consider the use of mobile
agents nor do they consider using a modal logic to create
security policies.

Steggles et al [19] describe the architecture of Sentient
“Follow-Me” mobile applications at AT&T Laboratories,
Cambridge. The major difference between this and our
work is that they only consider the case of a trusted envi-
ronment where security is less of an issue and they do not
propose building applications out of mobile agents. Unlike
our work, they do not attempt to factor out mobility policy
as a separate concern.

The LocALE (Location-Aware Lifecycle Environment)
framework provides a CORBA-based [16] mechanism to
control the lifecycle (i.e. creation and destruction) and lo-

cation of software objects residing on a network. LocALE
defines the notion of a Location Domain – a group of ma-
chines physically located in the same place. This allows the
system to migrate objects to particular physical locations
rather than specific hosts. Objects created in LocALE have
two additional attributes: (i) Location specifying in which
Location Domain the object should be created; and (ii) Con-
straints specifying whether the object is allowed to move
within its Location Domain or remain static. Our work sub-
sumes theirs; we can write policies similar to their Con-
straints but can also express more flexible spatial policies.

7 Discussion and Future Work

There are many opportunities for future work based on
this project. One of our goals is to create a way of structur-
ing applications to make the task of building Sentient Mo-
bile Applications easier. Realistically, to fully test our work
we must involve more developers, encourage them to use
this system and to gather feedback from them.

Although we believe that policies based on space will
be easy for users to understand (we base this claim on the
observation that people already understand and use spatial
policies in the real world e.g. signs on doors saying “this
area off-limits to unauthorised personel”) there are still a
few things to do which would make the system even easier
to use. For example, we need a simple graphical interface
to allow users to query the state of the system and to write
policies.

We also wish to extend the model of the world by adding
extra metadata to our World Modelling Service. It might
prove useful to find out information such as when the last
location update was registered – for example, an application
containing sensitive information might like regular assur-
ance that it is still in a secure location. Such an application
would terminate itself if it does not see an update for an long
period of time.

Another possibility is to attempt some form of install-
time security policy checking. The per-application policy
may be viewed as a kind of contract with the system which
could be checked for inconsistency with installed global
policies. An application which passed the checks would
be allowed to run freely whereas one which did not may be
refused permission to execute, or be executed in a heavily
monitored environment.

Finally we would like to investigate ways to make the
system more scalable. Currently the WMS represents the
whole of the world as a single tree – fine for a single organi-
sation but not a very good representation for an environment
populated by untrusting groups of peers (e.g. on the Inter-
net). It may be possible to draw an analogy between being
represented in multiple simultaneous hierarchies and a user
talking in multiple “internet chat rooms” at once. A transi-



tion (i.e. a migration) might only be allowed if permitted by
all of the hierarchies concerned. This is a high priority for
future work.

8 Conclusion

In this paper we described the usefulness of a new class
of applications, dubbed “Sentient Mobile Applications”.
These applications are able to perceive their environment,
both physically and electronically, and move themselves be-
tween hosts on the network in order to best achieve their
goals. We argued that, in order for this style of applica-
tion to become widely adopted, we need mechanisms both
to make the task of creating applications easier and also
to make it possible to impose constraints on running ap-
plications to prevent them from getting out of control. We
proposed policy-based solutions to both these problems: a
mechanism for abstracting mobility policy from the appli-
cation which hopefully makes application development eas-
ier whilst a modal-logic based global policy language called
SpatialP provides a way to restrict the behaviour of the
application at runtime.
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