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ABSTRACT
Application-level web security refers to vulnerabilities inher-
ent in the code of a web-application itself (irrespective of the
technologies in which it is implemented or the security of the
web-server/back-end database on which it is built). In the
last few months application-level vulnerabilities have been
exploited with serious consequences: hackers have tricked
e-commerce sites into shipping goods for no charge, user-
names and passwords have been harvested and confidential
information (such as addresses and credit-card numbers) has
been leaked.

In this paper we investigate new tools and techniques
which address the problem of application-level web secu-
rity. We (i) describe a scalable structuring mechanism facil-
itating the abstraction of security policies from large web-
applications developed in heterogenous multi-platform envi-
ronments; (ii) present a tool which assists programmers de-
velop secure applications which are resilient to a wide range
of common attacks; and (iii) report results and experience
arising from our implementation of these techniques.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—modules and interfaces; D.2.12 [Software Engi-

neering]: Interoperability—interface definition languages

General Terms
Security, Design

Keywords
Application-Level Web Security, Security Policy Description
Language, Component-based Design

1. INTRODUCTION
On the 25th January, 2001, an article appeared in a re-

spected British newspaper entitled Security Hole Threatens

British E-tailers [13]. The article described how a journalist
hacked a number of e-commerce sites, successfully buying
goods for less than their intended prices. The attacks re-
sulted in a number of purchases being made for 10 pence
each including an internet domain name (ivehadyou.org.uk),
a “Wales Direct” calendar and tickets for a Jimmy Nail pop
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concert1. The author of the article rightly observes that the
process “requires no particular technical skill”; the attack
merely involves saving the HTML form to disk, modifying
the price (stored in a hidden form field) using a text editor
and reloading the HTML form back into the browser. A
recent article published in ZD-Net [17] suggests that be-
tween 30% and 40% of e-commerce sites throughout the
world are vulnerable to this simple attack. Internet Security
Systems (ISS) identified eleven widely deployed commercial
shopping-cart applications which suffer from the vulnerabil-
ity [14].

The price changing attack is a consequence of an appli-
cation-level security hole. We use the term application-
level web security to refer to vulnerabilities inherent in the
code of a web-application itself (irrespective of the tech-
nology in which it is implemented or the security of the
web-server/back-end database on which it is built). Most
application-level security holes arise because web applica-
tions mistakenly trust data returned from a client. For
example, in the price-changing attack, the web application
makes the invalid assumption that a user cannot modify the
price because it is stored in a hidden field.

Application-level security vulnerabilities are well known
and many articles have been published advising develop-
ers on how they can be avoided [22, 23, 28]. Fixing a sin-
gle occurrence of a vulnerability is usually easy. However,
the massive number of interactions between different com-
ponents of a dynamic website makes application-level se-
curity challenging in general. Despite numerous efforts to
tighten application-level security through code-review and
other software-engineering practices [18] the fact remains
that a large number of professionally designed websites still
suffer from serious application-level security holes. This ev-
idence suggests that higher-level tools and techniques are
required to address the problem.

In this paper we present a structuring technique which
helps designers abstract security policies from large web ap-
plications. Our system consists of a specialised Security-
Policy Description Language (SPDL) which is used to pro-
gram an application-level firewall (referred to as a secu-
rity gateway). Security policies are written in SPDL and
compiled for execution on the security gateway. The secu-
rity gateway dynamically analyses and transforms HTTP
requests/responses to enforce the specified policy.

1Some readers may argue that 10p is the true value of tickets
to such a concert. A full discussion of this topic is outside
the scope of this paper.



The remainder of the paper is structured as follows: Sec-
tion 2 surveys a number of application-level attacks and dis-
cusses some of the reasons why application-level vulnerabili-
ties are so prevalent in practice. In Section 3 we describe the
technical details of our system for abstracting application-
level web security. Our methodology is illustrated with an
extended example in Section 4 and we discuss how the ideas
in this paper may be generalised in Section 5. We have im-
plemented the techniques discussed in this paper. The per-
formance of our implementation is evaluated in Section 6.
Related work is discussed in Section 7; finally, Section 8
concludes.

2. APPLICATION-LEVEL SECURITY
We start by briefly categorising and surveying a number

of common application-level attacks. We make no claims
regarding the completeness of this survey; the vulnerabilities
highlighted here are a selection of those which we feel are
particularly important.

Form Modification
HTML forms are an application-level security minefield. Our
own experiments indicate that a significant percentage of
web forms are vulnerable to application-level attacks. The
main reason for this is that web designers implicitly trust
validation rules which are enforced only on the client-side.
Examples of client-side form validation include both con-
straints imposed by the HTML itself (e.g. the MaxLength at-
tribute) and scripts (usually JavaScript programs) which are
executed on the client. Of course, in practice users can eas-
ily modify client-side validation rules so they should never
be trusted.

The stateless nature of the HTTP protocol leaves design-
ers with the task of managing application state across mul-
tiple requests. It is often easier to thread state through a
series of request/responses using hidden form fields than it
is to store data in a back-end database. Unfortunately using
hidden form fields in this way enables the client to modify
internal application state, leading to vulnerabilities such as
the price changing attack described in the Introduction. It is
interesting to note that a respected textbook on HTML [21]
recommends this dangerous practice without any mention
of security issues.

Form modification is often used in conjunction with other
attacks. For example, changing MaxLength constraints on
the client may expose buffer overruns and SQL errors on
the server side. Information gleaned from such failures pro-
vides insights into the internal structure of the site possibly
highlighting areas where it is particularly vulnerable.

Although writing server-side code to handle form input
securely may not be cerebrally taxing, it is a tedious, time-
consuming and error-prone task which is rarely undertaken
correctly (if at all) in practice.

SQL Attacks
Web applications commonly use data read from a client
to construct SQL queries. Unfortunately constructing the
query näıvely leads to a vulnerability where the user can
execute arbitrary SQL against the back-end database. The
attack is best illustrated with a simple example:

Consider an Employee Directory Website (written in the
popular scripting language PHP [3]) which prompts a user
to enter the surname of an employee to search for by means

of a form-box called searchName. On the server-side this
search string (stored in the variable

�
searchName) is used to

build an SQL query. This may involve code such as:

$query = "SELECT forenname,tel,fax,email

FROM personal

WHERE surname=‘$searchName’; ";

However, if the user enters the following text into the
searchName form box:

’; SELECT password,tel,fax,email FROM personal

WHERE surname=‘Sharp

then the value of variable,
�
query will become:

SELECT forenames,tel,fax,email FROM personal

WHERE surname=‘’;

SELECT password,tel,fax,email FROM personal

WHERE surname=‘Sharp’;

When executed on some SQL databases, this will result in
Sharp’s password being returned instead of his forename.
(Even if only a hash of the password is leaked, a forward-
search attack against a standard dictionary stands a reason-
able chance of recovering the actual password.)

Cross-Site Scripting
Cross-Site Scripting (XSS) refers to a range of attacks in
which users submit malicious HTML (possibly including
scripts—e.g. JavaScript) to dynamic web applications. The
malicious HTML may be embedded inside URL parameters,
form fields or cookies. When other users view the malicious
content it appears to come from the dynamic website itself,
a trusted source. The implications of XSS are severe; for
example, the Same Origin Policy , a key part of JavaScript’s
security model [12], is subverted.

A CERT advisory (CA-2000-02) [7] outlines a range of se-
rious attacks which come under the general heading of XSS.
The list of attacks include stealing confidential information
(e.g. usernames, passwords, credit-card numbers), altering
the behaviour of forms (e.g. posting data to a cracker’s ma-
chine) and exposing SSL-Encrypted connections. Clayton et
al. [9] describe the details of a Java/JavaScript XSS attack
which reveals the IP-addresses of clients using a (suppos-
edly) anonymous dating service.

It is well known that XSS vulnerabilities can be fixed by
encoding HTML meta-characters2 explicitly using HTML’s
#&〈n〉 syntax, where 〈n〉 is the numerical representation of
the encoded character. However, the flexibility of HTML
makes this a more complicated task than many people re-
alise [8]. Furthermore, for large applications, it is a laborious
and error-prone task to ensure that all input from the user
has been appropriately HTML encoded.

2.1 Motivation and Contributions
In this section we discuss a number of factors which con-

tribute to the prevalence of application-level security vulner-
abilities. We believe that each of the problems listed below
points to the same solution: the security policy should be
applied at a higher-level, removing security-related respon-
sibilities from coders whenever possible.

2Meta-characters are those which have special meaning
within HTML. For example < and > are used to delimit
tags.



A major cause of application-level security vulnerabilities
is a general lack of language-level support in popular un-
typed scripting languages. For example, consider the lan-
guages PHP [3] and VB-Script [24]. When using these lan-
guages it is the job of the programmer to manually verify
that all user input is appropriately HTML-encoded. Inad-
vertently omitting a call to the HTML-encoding function
results in a vulnerability being introduced. For large appli-
cations written in such languages it is inevitable that a few
such vulnerabilities will creep in. (Note that some technolo-
gies provide greater language-level support in this respect:
when using typed languages, such as Java, the type-system
can be employed to statically verify that all user input has
been passed through an HTML-encoding function; Perl’s
taint mode offers similar guarantees but through run-time
checks rather than compile-time analysis).

If web applications were written in a single programming
language by a small number of developers then one could
separate the security policy from the main body of code by
abstracting security-related library functions behind a clean
API. However, in reality large web applications often con-
sist of a large number of interacting components written in
different programming languages by separate teams of de-
velopers. To complicate the situation further, some of these
components may be bought in from third-party developers
(possibly in binary form). In such an environment it is dif-
ficult to abstract common code-blocks into libraries. The
inevitable consequence is that security-critical code is scat-
tered throughout the application in an unstructured way.
This lack of structure makes fixing vulnerabilities difficult:
the same security hole may have to be fixed several times
throughout the application.

Another major issue, albeit a non-technical one, is a lack
of concern for security in the web-development community.
Although we realise that this is a generalisation, evidence
suggests that factors such as time-to-market, graphic design
and usability are generally considered higher priority than
application-level security. We recently talked with some
web-developers working for a large telecommunications com-
pany3; they were surprised to hear of the attacks outlined in
Section 2 and had taken no steps to protect against them.

In this paper we present tools and techniques which pro-
tect websites from application-level attacks. Whilst we recog-
nise that our proposed methodology is not a panacea, we
claim that it does help to protect against a wide-range of
common vulnerabilities.

3. TECHNICAL DETAILS
Our system consists of a number of components:

1. A security policy description language (SPDL) is used
to specify a set of validation constraints and transfor-
mation rules.

2. A policy compiler automatically translates the SPDL
into code for checking validation constraints.

3. An application-level security gateway is positioned be-
tween the web-server and client machines.

Figure 1 shows a diagrammatic view of the components
of our system and the interactions between them. Note that

3We hasten to add that this was not our sponsors, AT&T!

Security Policy Compiler

SPDL Specification

Security GatewayWeb Server

Network

Web Files
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Figure 1: A diagrammatic view of our system for

abstracting application-level web security

the security-gateway does not have to run on a dedicated
machine: it could be executed as a separate process on the
existing web-server or, to achieve better performance, inte-
grated into the web-server directly.

3.1 System Overview
A designer codes a set of validation constraints and trans-

formation rules in SPDL. Validation constraints place re-
strictions on data in cookies, URL parameters and forms.
For example, typical constraints include “the value of this
cookie must be an integer between 1 and 3” and “the value of
this (hidden) form field must never be modified”. The trans-
formation rules of an SPDL specification allow a program-
mer to specify various transformations on user-input. The
kind of transformations which may be specified are “pass
data from all fields on form f through an HTML-encoding
function” or “escape all single and double quotes in text
submitted via this URL parameter”. A detailed description
of SPDL is given in Section 3.2.

The policy compiler translates SPDL into code which en-
forces validation rules and applies the specified transforma-
tions. The generated code is dynamically loaded into the
security gateway where it is executed in order to enforce the
specified policy. The security gateway acts as an application-
level firewall; its job is to intercept, analyse and transform
whole HTTP messages (see Section 3.4). As well as check-
ing HTTP requests, the security gateway also rewrites the
HTML in HTTP responses, annotating it with Message Au-
thentication Codes (MACs) [27] to protect state which may
have been malliciously modified by clients (see Section 3.4.2).

Although performing validation checks on the server-side
is sufficient for security purposes, user-interface issues some-
times require validation rules to be applied on the client-side.
For example, web-forms often use JavaScript for client-side
validation to reduce the observed latency between form sub-
mission and receiving validation errors. To address this
need, the policy compiler offers the option of generating
JavaScript directly from the validation rules of the SPDL
specification. The security gateway analyses forms as they
are sent to the client, automatically inserting JavaScript val-
idation rules where appropriate. Since both client-side and
server-side validation code is derived from a single specifica-
tion, designers only have to write the security policy once.
Even if the client-side JavaScript is subverted there are still
server-side checks in place.



Note that the reason we insert JavaScript into forms dy-
namically (rather than inserting it statically into files in the
web repository) is that many applications use server-side
code to generate forms on-the-fly. Although there is scope
for analysis of web scripting languages to insert validation
code statically this is a topic for future work.

3.2 Security Policy Description Language
At the top level an SPDL specification is an XML docu-

ment. The DTD corresponding to SPDL is shown in Fig-
ure 2. A policy element contains a series of URL and cookie

elements. For each URL element a number of parameters
are declared. The attributes of a parameter element with
name = p place constraints on data passed via p:

• The maxlength and minlength attributes specify the
maximum and minimum length of data passed via p.

• Setting required to “Y” specifies that p must always
contain a (non-zero length) value;

• Setting MAC to “Y” specifies that the value of p must
be accompanied by a Message Authentication Code
(MAC) [27] generated by the server. This prevents
the user from changing the value of the parameter to
arbitrary values (see Section 3.4.2).

• The type attribute specifies the data-type of p (either
int, float, bool or string).

The method attribute determines whether the specified con-
straints apply to p passed as a GET-parameter (i.e. a URL
argument) or a POST-parameter (i.e. returned from a form).
Setting method to GETandPOST means that the constraints
within the parameter element are applicable to both GET
and POST parameters with name = p. (The GETandPOST

option is particularly useful if parts of a web-application
are written in a language which does not force a distinction
between GET and POST parameters with the same name—
e.g. PHP.)

For example, consider the following security policy de-
scription:

<policy>

<URL prefix="http://example">

<parameter name="p1" maxlength="4"

type="int" required="Y"

MAC="N">

</parameter>

<parameter name="p2" method="POST"

maxlength="3" type="string">

</parameter>

</URL>

</policy>

This example specifies constraints on parameters passed to
URLs with prefix “http://example”.

The first parameter element defines constraints to be ap-
plied to a parameter named p1 (either GET or POST); the
second parameter element defines constraints to be applied
to a POST parameter named p2.

We hope that the attributes of parameter elements cover
the majority of validation constraints that designers require.
However, in some circumstances a greater degree of control is
required: this is provided by the validation element. The

validation element allows complex constraints to be en-
coded in a general purpose validation language. The content
of the validation element is a validation expression written
in a simple, call-by-value, applicative language which is es-
sentially a simply-typed subset of Standard ML [20]. (Note
that the precise details of the language are not the main
focus of this paper. In principle any language could be used
to express validation constraints. For expository purposes,
we choose to make the language as simple as possible.)

The abstract syntax of the validation language is shown
in Figure 3. A well-formed validation expression has type
boolean. If the validation expression of parameter, p, eval-
uates to true then this signifies that p contains valid data;
conversely evaluating to false highlights a validation failure.
Badly typed validation programs are rejected by a compile-
time type-checking phase (see Section 3.3). Within valida-
tion expressions, the value of the field specified in the en-
closing parameter element is referred to as this. Values of
other (declared) GET and POST parameters can be refer-
enced as getparam.name and postparam.name respectively.
In this way validation rules can be dependent on the values
of multiple parameters.

A number of primitive-defined functions and binary oper-
ators are provided. Although we do not list them all here,
those of particular importance are outlined below:

• Arithmetic operators +, -, * and / can be applied to
both integers and floating point values. String con-
catenation is represented by the infix operator ++.

• The function format(s,regexp) returns true iff s is of
the form specified by regular expression, regexp.

• We provide the function mid(s,l,r) which returns the
substring of s which starts at character l and finishes
at character r inclusively. (Characters of s are num-
bered from 1).

• Functions are provided to cast between different types.
For example, String.fromInt(i) returns the string
representation of integer i.

• Function isdefined(p) takes a parameter (for exam-
ple, postparam.p or getparam.p) and returns a boolean
indicating whether p is defined (i.e. has been passed to
the URL in the HTTP request). Using an undefined
parameter as an argument to any other function or op-
erator leads to a dynamically generated error message.

Transformation rules are much simpler than validation ex-
pressions and are delimited by the <transformation> tag.
The contents of a transformation element nested within
a parameter element, p, specifies a pipeline of transforma-
tions to be applied to data received via p. For example, if
we always wanted to apply transformation t1 followed by
t2 to parameter p passed via a given URL then our SPDL
specification would contain:

<URL prefix="...">

<parameter name="p" ...>

<transformation> t1 | t2 </transformation>

</parameter>

</URL>

Transformations are selected from a pre-defined library. In
our current implementation we have defined the following
transformations:



<!ELEMENT policy (URL*, cookie*)>

<!ELEMENT URL (parameter*)>

<!ATTLIST URL prefix CDATA #REQUIRED>

<!ELEMENT parameter (validation*, transformation*)>

<!ATTLIST parameter method (GET | POST | GETandPOST) "GETandPOST">

<!ATTLIST parameter name CDATA #REQUIRED>

<!ATTLIST parameter maxlength CDATA #REQUIRED>

<!ATTLIST parameter minlength CDATA "0">

<!ATTLIST parameter required (Y | N) "N">

<!ATTLIST parameter MAC (Y | N) "Y">

<!ATTLIST parameter type (int | float | bool | string) #REQUIRED>

<!ELEMENT cookie (validation*, transformation*)>

<!ATTLIST cookie name CDATA #REQUIRED>

<!ATTLIST cookie maxlength CDATA #REQUIRED>

<!ATTLIST cookie minlength CDATA "0">

<!ATTLIST cookie MAC (Y | N) "Y">

<!ATTLIST cookie type (int | float | bool | string) #REQUIRED>

<!ELEMENT validation (#CDATA)>

<!ELEMENT transformation (#CDATA)>

<!ATTLIST transformation htmlencode (Y | N) "Y">

Figure 2: The XML DTD for the Security Policy Description Language

e ← x (variables)
| c (constants)
| f(e1, . . . , ek) (function calls)
| getparam.c (value of GET parameters)
| postparam.c (value of POST parameters)
| this (value of this field)
| e1 〈op〉 e2 (binary infix operators)
| if e1 then e2 else e3 (conditionals)
| let d . . . d in e end (local declarations)

d ← val x : t = e (immutable bindings)
| fun f(x1 : t, . . . , xk : t) : t = e (function definitions)

t ← int | float | string | bool (types)

Figure 3: The Abstract Syntax of the Validation Language



EscapeSingleQuotes Replace all single quotes with their
HTML character encoding.

EscapeDoubleQuotes Replace double quotes with their
HTML character encoding.

HTMLEncode HTML-encode the data. Replace meta-
characters with their numerical representations.

PartialHTMLEncode HTML-encode the input but leave
a small number of allowed tags untouched (including
style tags, <b>, <u> and <i> and anchors of the form
<a href="..."> ... </a>).

Facility is provided for the user to define other transforma-
tions and include them in the library.

We consider the HTML-encoding transformation to be
of particular importance since inadvertently forgetting to
HTML-encode user-input leads to Cross-Site Scripting vul-
nerabilities (see Section 2). For this reason we adopt the
convention that all parameters are HTML-encoded unless
explicitly specified otherwise in the security policy. To turn
off HTML-encoding one must set the htmlencode attribute
of the transformation element to N. For example one may
write:

...

<transformation htmlencode="N">

PartialHTMLEncode | EscapeSingleQuotes

</transformation>

...

Recall from Figure 2 that, at the top-level, an SPDL de-
scription consists of a series of URL and cookie elements. We
have already discussed URL elements in detail; in a similar
fashion, cookie elements allow designers to place validation
constraints on cookies returned from clients’ machines. In
this presentation we make the simplifying assumption that
cookies are global across the whole site (i.e. the path at-
tributes of all Set-Cookie headers in HTTP responses are
set to “/”). Under these circumstances the client sends
the values of all the application’s cookies with each HTTP-
request. Since all client-side state is sent to the server in each
request we can generate MACs securely without requiring
server-side state in the security gateway (see Section 3.4.2).

3.3 Policy Compiler
The policy compiler takes an SPDL specification (as de-

scribed in Section 3.2) and compiles it for execution on the
Security Gateway. Validation rules and constraints are also
compiled into JavaScript ready to be embedded into forms
and executed on clients.

Compilation is performed in two passes. In the first pass
the declared parameters and their types are enumerated; in
the second pass the contents of the validation and trans-
formation elements are compiled. Using a two-pass archi-
tecture allows the use of forward parameter references. For
example, consider a URL element, u, which contains declara-
tions of parameters p1 and p2, where p1 is declared before
p2. It is perfectly acceptable for the validation code of pa-
rameter p1 to refer to p2 (and vice-versa).

Validation expressions are type-checked at compile-time,
helping to eliminate errors from SPDL validation code. In
the current incarnation of the system, validation expressions
are simply-typed (that is, we do not allow parametric poly-
morphism). However, should experience show this to be

Check URL and
parameter names

Check
MAC

Apply
transformations

Execute
Validation

Code

Type
Checking

Fetch page from server;
Modify HTTP Response

Return Error
Page

Receive
HTTP Request

Return
HTTP Response

Pass

Fail Fail Fail

Pass

Pass

Figure 4: The tasks performed by the security gate-

way

too inflexible, there is no reason why more sophisticated
type-systems (e.g. ML style polymorphism [19]) could not
be employed in future versions.

3.4 The Security Gateway
Figure 4 shows the algorithm executed by the Security

Gateway on receipt of an HTTP request. First, the URL
is extracted from the HTTP header. This is used to select
the appropriate validation rules and transformations to ap-
ply. If the URL does not match any of those specified in
the security policy then the request is not propagated to
the web-server and an error page is returned to the user.
By forbidding all URLs that do not match those explicitly
in our database we prevent a cracker using obscure, non-
standard URL encoding techniques to circumvent the secu-
rity gateway (thus avoiding attacks of the kind recently used
on Cisco’s Intrusion Detection System [11]). Rejecting un-
specified URLs also provides an engineering benefit: since
each URL requires a corresponding SPDL definition engi-
neers are forced to keep the security policy in sync with the
application.

Having identified a valid URL, the security gateway pro-
ceeds to check the names of all parameters and cookies
passed in the HTTP request. Errors are generated if (i)
any of the parameters present are not declared in the SPDL
policy; (ii) any of the required parameters are missing; or
(iii) the cookies present do not precisely match those spec-
ified in the SPDL specification. Once we are sure that the
HTTP message contains a valid combination of cookies and
GET/POST parameters, type and length constraints are
checked. If any violations occur at this stage then a descrip-
tive error message is returned to the client. The security
gateway then checks that the message authentication code
is valid. Section 3.4.2 describes this process in detail.

Next the transformations specified in the security policy
are applied. Transformations are total functions on strings—
well written transformation code should not generate ex-
ceptions. However, if a badly written transformation func-
tion does generate a run-time exception then the process is
aborted and an error message is returned to the client. Fi-
nally all validation expressions are evaluated. If all of the
validation expressions evaluate to true then the HTTP re-
quest is forwarded to the web-server and the page is fetched.

The security gateway processes HTTP responses returned
from the web-server: JavaScript validation code (generated



by the SPDL compiler) is inserted into HTML forms (see
Section 3.4.1), MaxLength attributes on form elements are
set according to the SPDL specification and, finally, message
authentication codes are generated for form fields and URL-
parameters (see Section 3.4.2) if required.

3.4.1 Client-side Form Validation
For each HTML-form in the HTTP response the secu-

rity gateway inserts JavaScript code to perform validation
checks on the client’s machine. (Recall that the insertion
of JavaScript is merely to enhance usability—the generated
JavaScript is not considered a substitute for server-side val-
idation checking).

The process of inserting validation JavaScript on forms
involves the following steps:

1. The security gateway scans the HTML for <form> tags
and extracts the destination URL from the form action

attribute.

2. From this destination URL the validation constraints
to apply to form fields are determined. (Note that we
also have to look at the form’s method attribute to
determine whether the fields will be sent as GET or
POST parameters).

3. A JavaScript validation program is constructed by con-
catenating pre-compiled JavaScript fragments: one for
each of the fields on the form. (The JavaScript code
has already been generated by the policy compiler—
see Section 3.3.)

4. The JavaScript validation program is inserted into the
onSubmit attribute of the form tag.

If there is already an onSubmit attribute present then the
security gateway does not insert the validation program.
We take the view that if a form already has an onSubmit

attribute then this over-rides the automatically generated
validation JavaScript.

As well as explicitly enforcing the checks specified in the
validation elements of SPDL specifications the validation
JavaScript also enforces type-checking rules, enforces min-
length constraints and ensures that all required fields con-
tain data. (Note that we do not have to worry about max-
length constraints since these are inserted directly as HTML
attributes).

3.4.2 Message Authentication Codes
We have already seen that an SPDL specification can de-

clare that certain URL parameters must only contain data
accompanied by a Message Authentication Code (MAC) [27]
generated by the security gateway. As data is sent to the
client, the security gateway annotates it with MACs; as data
is returned from clients the MACs are checked. In this way
we prevent users from modifying data which should not be
changed on the client-side (e.g. security-critical hidden form-
fields).

Consider an ordered list of values, l. We write, mac(l)
to denote the message authentication code corresponding
to l. In our current implementation the value of mac(l) is
calculated as the MD5-hash [25] of a string containing the
values of l concatenated together along with a time-stamp
and a secret . The secret is a value which is not known by

the client; since clients do not know the secret they cannot
construct their own MACs.

Before describing the algorithm used to annotate the gen-
erated HTML with MACs we make a few auxiliary defini-
tions. Consider a list of pairs, l = [(k1, v1), . . . , (kn, vn)]. We
define sort(l) to be l sorted by k-values and vals(l) to be
the list [v1, . . . , vn]. Function sortVals is the composition of
sort and vals (i.e. sortV als(l) = vals(sort(l))). Appending
of lists is performed by the binary infix operator ‘@’. Now
consider an HTTP request, Hreq, which triggers response
Hres. The algorithm for annotating the body of Hres with
MACs is as follows:

1. Construct a list, lc, of the name/value pairs of cookies
in Hreq. (Recall our assumption that clients return all
cookies with each HTTP-request—see Section 3.2).

2. Remove the entries from lc corresponding to cookies
which do not have the MAC attribute set to “Y” in the
SPDL specification.

3. For each URL, u, (which is not a form action) in the
body of Hres:

(a) Construct a list, lg , containing all the parame-
ter/value pairs contained in URL u.

(b) Remove the entries from list lg corresponding to
parameters which do not have the MAC attribute
set to “Y” in the SPDL specification.

(c) Generate a time-stamp to be included in the MAC.

(d) Add a new parameter to u which records the value
of the time-stamp.

(e) Add a new parameter to u to record the MAC.
The value of the MAC is given by:

mac(sortV als(lc) @ sortV als(lg))

4. For each form, f , with action-URL, u, in the body of
Hres:

(a) Construct a list, lg, of all the parameter/values
pairs contained in URL u.

(b) Construct a list, lp, of all the field-name/value
pairs contained in form f .

(c) Remove the entries from lists lg and lp corre-
sponding to parameters which do not have the
MAC attribute set to “Y” in the SPDL specifica-
tion.

(d) Generate a time-stamp to be included in the MAC.

(e) Add a new parameter to u which records the value
of the time-stamp.

(f) Add a new parameter to u to record the MAC.
The value of the MAC is given by:

mac(sortV als(lc) @ sortV als(lg) @ sortV als(lp))

For example consider the URL:

http://example/a.asp?p1=4&p2=5

In the case where both p1 and p2 require a MAC then this
URL will be re-written, taking the form:

http://example/a.asp?p1=4&p2=5

&mac=3a53fe1d995a23

&time=13eaf49b



where the parameter mac stores the message authentication
code corresponding to p1 = 4, p2 = 5 with the time-stamp
stored in parameter time.

When data is received from a client via GET/POST pa-
rameters then the values of those parameters which have
their MAC attribute set to “Y” are fed back into the MAC
generation algorithm described above. Note that the origi-
nal time-stamp (returned from the client as a GET parame-
ter) is also required to recompute the MAC. We compare the
recalculated MAC with the MAC returned from the client in
order to determine whether any parameters were tampered
with.

When designing the MAC algorithm one of our major con-
cerns was to avoid replay attacks [29] where clients replay
messages already annotated with MACs in unexpected con-
texts. We take two steps to avoid such attacks:

1. We include a time-stamp in the MAC and do not ac-
cept MACs which are more than a few minutes old.

2. Rather than generating separate MACs for each indi-
vidual protected field, we generate a single MAC for all
protected client-side state. This protects against cut-
and-splice attacks (in which MAC-annotated fields are
swapped into other messages).

Despite these preventative measures, the responsibility for
ensuring that replay attacks are not damaging ultimately
rests with the security policy designer. For example, in the
case study of Section 4 a MAC is generated for both the
productID and Price fields. Although users can replay such
messages this results in multiple purchases of the same prod-
uct for the correct price. The key is that the MAC prevents
the Price and productID being modified independently.

3.5 Extensions
As well as applying the validation and transformation

rules of SPDL specifications, our security gateway performs
a number of other tasks. Two of these are described in this
section.

3.5.1 Restricting Values of Select Parameters
Select parameters (delimited using the <select> tag in

HTML forms) invite users to choose options from a pre-
specified list. Although web designers often make the as-
sumption that clients will only select values present in the
list, a simple form-modification attack allows clients to sub-
mit arbitrary data in select parameters.

The security gateway protects against such an attack, pre-
venting clients from submitting values for select parameters
that were not present in the original HTML form. Our im-
plementation involves the use of a control field which en-
codes dynamically generated lists of valid values for select
parameters. The control-field is a hidden form-field gen-
erated automatically by the security-gateway and inserted
into forms which contain <select>s. When form parame-
ters are returned to the server, the value of the control field
is decoded and used to validate values of select parameters.
To prevent the control field being maliciously modified by
clients, its value is included in the calculation of the form’s
message authentication code.

3.5.2 Protecting against Server Misconfiguration
Web applications often consist of a number of files contain-

ing embedded code (e.g. PHP or VBscript) which is executed

on the server-side in order to generate dynamic responses
to client requests. A number of attacks on web-servers (or
indeed badly configured web-servers) can result in this em-
bedded code being transmitted to the client in source form4.
This can be potentially devastating since it gives crackers
detailed information about the inner-workings of the appli-
cation. For example, in some (badly written) applications
the code contains plaintext passwords used to authenticate
against back-end database servers.

We have demonstrated that our security gateway can pro-
tect against such attacks by searching for sequences of char-
acters which delimit embedded code in HTTP responses
(e.g. <%, %> for ASP or <?php, ?> for PHP). Detection of
such delimiters implies (with reasonable probability) that
server-side code is about to leaked. Hence, if any delimiters
are found the security gateway filters the HTTP response
and returns a suitable error message to the client informing
them that the page they requested is unavailable.

4. CASE STUDY
To illustrate our methodology we consider using our sys-

tem to secure a simple e-commerce system. Consider the
following scenario:

As a final step in a purchasing transaction, users are sent
an HTML form requesting their surname, credit-card num-
ber and its expiry date. The price and product-ID are stored
in hidden form fields on the form. For example, when pur-
chasing a product with productID = 144264, the form sent
to the client is as follows:

<form method="POST" action="http://www.example/buy.asp">
<input type="hidden" name="price" value="423.54">
<input type="hidden" name="productID" value="144264">
<input type="text" name="surname">
<input type="text" name="CCnumber">
<input type="text" name="expires">

</form>

A single cookie, sessionKey, is used to uniquely identify
clients’ sessions. Once purchases have been made, an or-
der record is entered into the company’s back-end database
which can be subsequently viewed on their local intranet.

For the purposes of this example let us assume that the
system is vulnerable in the following ways:

1. The “modifying values of hidden form-fields” attack
(as described in the Introduction) can be used to re-
duce the price.

2. JavaScript can be embedded in the surname field which,
when viewed on the company’s intranet, leads to cross-
site scripting vulnerabilities.

3. SQL can be entered into the surname field using the
attack described in Section 2.

4. The session key is predictable since it is created using
a time-seeded random number generator; clients can
spoof other active sessions by modifying the value of
the sessionKey cookie.

4It is amusing to observe that entering a few VBscript key-
words into a search engine (we tried ‘dim "<%" set con’
on Google) results in a number of matches, some of which
contain ASP code unwittingly returned from misconfigured
servers. Even if the problem was subsequently fixed, Google
keeps a cached copy of the code!



The SPDL specification corresponding to the form’s ac-
tion URL is presented in Figure 5. Each of the parameters
shown in the form above are declared and a number of vali-
dation and transformation rules specified. Most of the SPDL
specification is self-explanatory although a few points are
worth noting. The validation element for the price field
simply states that negative prices are not allowed; the more
complicated validation expression for the CCnumber field is
an implementation of the Luhn-formula commonly used as
a simple validation check for credit-card numbers; the vali-
dation expression for the expires field ensures that it is of
the form mm/yy and also checks that the month is in the
range 1–12.

Using the policy description of Figure 5 we are able to fix
all of the system’s vulnerabilities (described above) without
modifying any of the code:

1. The simple form and cookie-manipulation attacks are
now impossible since the price and productID fields
along with the sessionKey cookie all have their MAC at-
tributes (implicitly) set to “Y”. This forces the security
gateway to generate and check message authentication
codes in order to prevent their values being tampered
with.

2. The surname field is HTML-encoded, preventing XSS
attacks.

3. SQL attacks are prevented by applying transforma-
tions to escape quotes in the surname field.

As the purchasing form is sent to clients, the security gate-
way inserts JavaScript (derived from the SPDL specification
of Figure 5) to check validation rules on the client-side. In
this example JavaScript is generated to ensure that credit-
card numbers satisfy the Luhn-formula, that expiry dates
are of the form mm/yy , that the surname field contains
a non-zero-length value etc. Note that if extra validation
constraints are required, they can simply be added once to
the SPDL specification. Using conventional tools and tech-
niques, the addition of extra validation constraints may re-
quire them to be coded multiple times (once in JavaScript
for client-side validation and at least once in the web appli-
cation’s source code).

5. GENERALISING OUR SYSTEM
Whilst we advocate the use of a specialised Security Policy

Description Language in the majority of cases, we recognise
that there are circumstances where the increased flexibility
of a general purpose programming language may be desir-
able.

In such cases we argue that using a security gateway to
abstract security-related code is still a useful technique. In-
stead of generating code for the security gateway via the
SPDL compiler, we observe that the security policy can be
encoded in a programming language of choice and compiled
directly for execution on the security gateway. Although
one loses the specialised features of the SPDL, using a gen-
eral purpose programming language provides designers with
a greater degree of freedom. (Of course with great power
comes great responsibility [15]. Programmers must take ex-
tra care to structure their security policy enforcement code
carefully.)
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We experimented with this idea by programming our se-
curity gateway directly in OCAML [16], using a comprehen-
sive HTTP library to process HTTP requests and responses.
We found that, even when using a general purpose program-
ming language to express the security policy, using a security
gateway to structure an application still provides a number
of advantages. In particular:

• we found the features of OCAML (notably its strict
type system) more conducive to writing security crit-
ical code than other languages more commonly used
for web application development;

• by abstracting the security policy cleanly we gained
the usual advantages of maintainability, clarity, in-
creased code re-use and reduced code size.



<policy>
<url prefix="http://www.example/buy.asp">

<parameter name="price" method="POST" maxlength="10" minlength="1" required="Y" type="float" >
<validation> this isGreaterThan 0.0 </validation>

</parameter>
<parameter name="productID" method="POST" maxlength="10" minlength="1" required="Y" type="int" />
<parameter name="surname" method="POST" maxlength="30" minlength="2" required="Y" MAC="N" type="string">

<transformation> EscapeSingleQuotes | EscapeDoubleQuotes </transformation>
</parameter>
<parameter name="CCnumber" method="POST" maxlength="16" minlength="16" MAC="N" required="Y" type="int">

<validation>
let fun first(s:string):string = String.mid(s,1,1)

fun rest(s:string):string = String.mid(s,2,String.length(s)-1)
fun double(s:string,a:bool):string =

if s="" then "" else (if a then first(s)
else String.fromInt ( Int.fromString( first(s) ) * 2 ))
++ (double (rest (s), not a))

fun sum(s:string):int =
if s="" then 0 else (Int.fromString (first(s))) + (sum (rest(s)))

in sum(double(this,false)) % 10 = 0
end

</validation>
</parameter>
<parameter name="expires" method="POST" maxlength="5" minlength="5" MAC="N" required="Y" type="string">

<validation> format(this,"\d\d/\d\d") and
Int.fromString( mid(s,1,2) ) <= 12 and Int.fromString( mid(s,1,2) ) >= 0

</validation>
</parameter>

</url>
<cookie name="sessionKey" maxlength="15" minlength="15" type="int" />

</policy>

Figure 5: SPDL specification for case study

6. SYSTEM PERFORMANCE
In this section we discuss performance issues and present

experimental results derived from our implementation of the
security gateway.

Figure 6 shows the latency of the security gateway and
compares it to the latency of other common types of HTTP
processing. The results were measured by fetching the home-
page of the Laboratory for Communications Engineering
(University of Cambridge)5 augmented with the web-form
described in our case-study of Section 4. The leftmost bar
shows the latency added by a Squid [4] proxy cache when
fetching a statically compiled version of the page; the middle
bar shows the added latency of dynamically generating the
page using PHP and a MySQL [2] backend; the rightmost
bar shows the latency of using the security gateway to en-
force the security policy of Figure 5. The final bar is divided
into two sections: the (lower) solid black section represents
the latency due to buffering the HTTP messages; the (up-
per) striped section shows the latency due to parsing the
HTTP messages and annotating the HTML with MACs.

The latency of our system is large compared with the la-
tencies incurred in proxy caching and dynamic page gen-
eration. To some extent this is due to the fact that our
näıve implementation is completely unoptimised. However,
we recognise that the complexity of the application-level
tasks performed by the security gateway will necessarily
incur more latency than the lower level manipulation per-
formed by proxies such as Squid. We regard our current
implementation as a proof-of-concept. In future work we in-
tend to concentrate on performance. Potential optimisations

5http://www-lce.eng.cam.ac.uk/

include (i) using a specialised HTML parser to concentrate
only on relevant parts of HTML syntax (we currently use a
general HTML parser which performs a great deal of unnec-
essary work); (ii) reducing latency by streaming the HTTP
messages and processing them on-the-fly whenever possible;
(iii) writing speed critical parts of the security gateway di-
rectly in C.

Figure 7 shows how the total throughput of a single secu-
rity gateway varies as the number of concurrently connected
clients increases. The measurements were taken running the
security gateway on a dual P-III 500 MHz. The throughput
quickly reaches a maximum value as the CPUs become satu-
rated. Again, we are confident that optimising our code for
performance and running the filter on a higher spec machine
would yield a significantly higher maximum throughput.

We designed the security gateway in a stateless manner,
choosing to annotate URL parameters, form fields and cook-
ies with MACs rather than storing session state in a back-
end database. Since the security gateway is stateless, one
may increase throughput linearly simply by deploying mul-
tiple security gateways and using a load balancing scheme
to distribute work between them (see Figure 8). (Note that
stateful systems do not scale linearly in this way since, ul-
timately, the centralised state becomes a bottleneck across
the cluster.)

The measurements presented here are worst case in the
sense that the HTML used to test the system was long and
complicated, containing both URLs and form parameters.
In reality we believe that many HTML pages would be sim-
pler for the security gateway to process (i.e. shorter, with-
out form parameters), leading to better average case per-
formance. Note that many of the HTTP messages would
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contain graphics and hence would not require any process-
ing at all. A performance-optimised security gateway could
examine the content-type header of HTTP responses, us-
ing streaming instead of buffering if no HTML processing is
required.

Furthermore, note that most of the overhead of the secu-
rity gateway is due to annotating HTML with MACs. If the
SPDL policy does not require the use of MACs then only
HTTP-request parameters need to be checked; the security
gateway can stream HTTP-responses directly.

We believe that the performance figures presented in this
section demonstrate that our techniques are applicable in
practice.

7. RELATED WORK
The idea of using firewalls to prevent unauthorised ac-

tivity at the application-protocol level is not new. A large
number of companies provide application-level firewalls as
commercial products. Typical services provided by such fire-
walls include virus protection and access control. However,
we are not aware of any application-level firewalls which ap-
ply user-specified validation and transformation rules.

Damiani et al. [10] describe a method for enforcing rôle-
based access control policies for remote method invocations
via the SOAP protocol [5]. The type of policies described
are very different to ours: they consider access control issues
whereas we try to prevent application-level attacks in gen-
eral. However, the similarity between the two systems lies
in the use of a firewall to enforce restrictions at the HTTP-
level.

The <bigwig> project [1] consists of domain-specific lan-
guages and tools for the development of web services. A part
of the <bigwig> project, PowerForms [6], allows constraints
(expressed as regular expressions) to be attached to form
fields. A compiler generates both client-side JavaScript and
code for server-side checks. Apart from the lack of a general
purpose validation language, the main difference between
this and our work is that PowerForms can only be used for
web-applications developed using the <bigwig> languages
and tools. In contrast our security-gateway works at the
HTTP-level and secures web-applications written in all lan-
guages.

Sanctum Inc. provide a product called AppShield [26]
which, like our Security Gateway, inspects HTTP messages
in an attempt to prevent application-level attacks. How-
ever, despite this apparent similarity, there are significant
differences between the two systems: we take the program-
matic approach of specifying a security policy explicitly; in
contrast AppShield has no SPDL or compiler and attempts
to infer a security policy dynamically. Whilst this allows
AppShield to be installed quickly, it limits the tasks it can
perform. In particular, since there is no policy description
language for describing validation or transformation rules,
AppShield knows very little about what constitutes valid
parameter values in HTTP-requests and can only perform
simple checks on data returned from clients. AppShield is
intended as a plug-and-play tool which provides a limited
degree of protection for existing websites with application-
level security problems. In contrast, we see our approach as
a suite of development tools and methodologies which aid in
the design-process of secure applications.

8. CONCLUSIONS AND FURTHER WORK
Enforcing a security policy across a large web-application

is difficult because:

• The application may be written in a variety of (non-
interoperating) languages. In this case there is no easy
way to abstract security-related code behind a clean
API. As a consequence security-related code will be
scattered throughout the application.

• The languages used for web-development are not al-
ways conducive to writing security-related code. In
particular it is difficult to give any compile-time guar-
antees about untyped scripting languages such as PHP
and VBScript.

• Web applications often contain third-party components.
Since it may not be viable to modify the source of such
components (either because the code was shipped in
binary form or because the license agreement is pro-
hibitive) then it is not obvious how security vulnera-
bilities should be fixed. (In reality one is often at the
mercy of the company who wrote the component.)

In this paper we have presented a method for abstracting
security-critical code from large web applications which ad-
dresses the problems outlined above. A specification lan-
guage for describing application-level security policies was
described and illustrated with a realistic example.

We hope that the tools and techniques described in this
paper will be useful in the development process of new web
applications. By abstracting the security policy from the
outset programmers have the advantage of a well-defined,
centralised set of assertions laid out in the SPDL security
specification. As well as reducing the amount of code written
by each developer we hope that the project’s SPDL specifica-
tion would act as a useful document, aiding communication
between teams of developers and speeding up code-review
processes. Justifying these claims with reference to real-life
case studies is high priority for future work.

Another direction for future work is to augment the secu-
rity gateway with a library of security-related services (e.g.
authentication and generation of secure session IDs). These
services could be called from the web-application using pro-
tocols such as XML-RPC or SOAP [5].



On their website Sanctum claim that their “AppShield
software secures your site by blocking any type of applica-
tion manipulation through the web”. Clearly this is false: if
it were possible to solve all application-level security prob-
lems with a black-box tool then there would be no need for
further security research.6 In contrast, we do not claim that
we have found a automatic fix for all application-level se-
curity problems: although our tool helps to secure a web
application it still requires a competent, security-aware en-
gineer to write/check the security policies by hand.

Based on the research reported in this paper, we claim
that our methodology provides a stronger foundation for se-
cure web applications than conventional tools and develop-
ment techniques. In addition, we believe that applying this
methodology in practice would make a significant and im-
mediate impact to the many websites which currently suffer
from application-level security vulnerabilities.
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