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1 Introduction

A typical Internet server finds itself in the middle of
a virtual battleground, under constant threat from worms,
viruses and other malware seeking to subvert the original
intentions of the programmer. In particular, critical Inter-
net servers such as OpenSSH, BIND and Sendmail have
had numerous dependability issues ranging from low-level
buffer overflows to subtle protocol logic errors. Despite the
decades of research on techniques such as model-checking,
type-safety and other forms of formal analysis, the vast ma-
jority of server implementations continue to be written un-
safely and informally in C/C++, often due to a desire for
performance or portability.

We set ourselves a challenge: re-implement a criti-
cal Internet service with a history of security problems
which meets both the traditional goals of systems re-
search (high performance, portable and scalable servers),
and those of the dependable systems community (well-
specified, formally-verified, fault-tolerant code). We chose
to implement SSH v2.

We believe our SSHv2 implementation is a good proof of
concept because: (i) the protocol is widely used as the mod-
ern “remote shell”, relied upon to gain access to machines
across a hostile network; (ii ) the most common implemen-
tations, such as OpenSSH or SSH.com, are written in C and
have had a steady stream of critical security vulnerabilities
and bugs in recent years; and (iii ) the SSHv2 protocol is in
the process of being documented by the IETF.

We build upon Objective Caml [5] — an existing high-
level language which provides strong memory-safety guar-
antees — butcrucially, we also address performance and
logical correctness concerns by setting ourselves two goals
for the server: (i) it must be at least as fast as the current best
of breed industrial implementation (in this case, OpenSSH);
and (ii ) it must be tractable to model-check important as-
pects of the server behaviour.

In Section 2, we show that low-level packet parsing can
be neatly expressed as aprotocol decision treein order to:
(i) generate efficient, statically type-safe functions suitable

for marshalling, unmarshalling and pretty-printing individ-
ual packets; (ii ) sanity-check the actual protocol specifica-
tion for inconsistencies before generating any code. Our
checks of the SSHv2 protocol using this technique revealed
real errors in the Internet Drafts being published by the
SECSH working group [13], and resulted in corrections be-
ing made.

In Section 3, we describe the notion of astatecalland
we demonstrate that the use of type-safe languages permits
the introduction ofinline automata, allowing a simplified
representation of the server process to be statically model-
checked and dynamically enforced at run-time, with ex-
tremely small performance overhead. Our inline automata
enable arbitrarily fine-grained models of the program to be
checked, in contrast to techniques such as privilege separa-
tion [10], which incurs a per-message IPC overhead due to
the use of multiple processes.

In Section 3.1, we describe the Statecall Policy Language
(SPL), used to specify the inline automata using a power-
ful, expressive, and familiar ’C’-like syntax. The SPL com-
piler outputs automaton code which links in directly to the
server source code, and also targets PROMELA, the input
language of the SPIN model checker [4] allowing us to me-
chanically verify important safety properties. Related work
is discussed in Section 4 while Section 5 provides current
results, discusses future work and concludes.

Problem 1: Servers need to guarantee memory safety to
guard against trivial buffer overflows.

Two common techniques to guarantee memory safety
found in modern programming languages aretype-systems
and dynamic bounds checks. Type-systems prevent pro-
grams mis-interpreting data values and allow data to been-
capsulatedbehind a set of interface functions. Dynamic
bounds checking is a simpler technique which prevents a
program accidentally illegally accessing memory outside a
finite buffer. Since we have set ourselves an ambitious per-
formance goal for our servers, we eliminate the class of dy-
namically typed languages such as Java, LISP, Python, Perl
etc.

We settled on the use of Objective Caml (OCaml) as a
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pragmatic language solution. OCaml is a modern variant of
the ML family, and offers strong static type checking, type
inference, a compact run-time garbage collector with mini-
mal overhead, direct native code generation to a variety of
CPU architectures, and a portable byte-code for any plat-
forms with an ANSI C compiler. OCaml’s static type sys-
tem reduces the overhead involved with tracking Run-Time
Type Information (RTTI) for variables and functions which
dynamically typed languages such as Java or C++ must do.

2 Packet Parsing

Low-level packet parsing has been a constant source of
bugs in traditional Internet servers. For example, the SSHv2
protocol specification defines a regular format for packets
consisting of a header, sequence of typed fields and ran-
dom padding. Two popular implementations—PuTTY and
OpenSSH—have had errors in their parsing code where
they failed to properly check the results of signed/unsigned
integer arithmetic leading to heap corruption.

Problem 2: Server network traffic needs to be parsed
safely and consistently, while avoiding run-time perfor-
mance overhead.

To overcome this, we define two components: (i) a “con-
tract module” which marshals, unmarshals and performs ba-
sic operations on low-level packet fields (in the case of SSH,
multiple precision integers etc.); and (ii ) an abstract speci-
fication of the parsing process as adecision treewhich cap-
tures informal rules in specification about how sequences of
fields should be parsed.

Consider the simple data structure in Figure 1, again
using the SSHv2 protocol as an example. On the left is
the decision tree whose root node is aByteChoice indi-
cating that the rest of the parsing process depends on the
value of the first field interpreted as a byte. Assuming the
byte has value 30, the left branch of the tree is followed.
The left branch (an “Init” packet) indicates the rest of the

packet contains a single field of typeMPint followed by
an end-of-packet marker. The above example was chosen
for simplicity; that other parts of the SSH specification re-
quire much larger decision trees.

Rather than dynamically interpret the decision tree, we
apply meta-programming techniques to generate concrete
OCaml code from the specification. This generated code
does three things: (i) defines one unique data type per
SSH packet; (ii ) defines one pretty-print function per SSH
packet; and (iii ) defines strongly-typed marshalling and de-
marshalling functions to/from a network stream using effi-
cient ML pattern-matching.

In addition to auto-generating code, the abstract specifi-
cation helped highlight design inconsistencies in the origi-
nal SSH specification. For example, SSH packets exist to
request functions such as X11 and TCP/IP port forward-
ing and the specification allows multiple requests to be is-
sued asynchronously. Each type of request has a reply
packet with different fields, but none of the reply pack-
ets refer to the originating request and the specification al-
lows the replies to come back in any order. This ambiguity
was solved by a correction to the SSH draft specification
through the IETF SECSH working group, which required
that replies be sent in exactly the same order that the re-
quests are received. Out of the hundreds of SSH packets we
specified, three such errors were found and corrected in our
packet specification.

This technique of generating high-performance
statically-typed packet parsing code from decision-trees is
applicable to many other common network protocols such
as DNS, BGP, and NTP, which have well-defined fields and
parsing procedures.

3 Inline Automata

The SSH protocol state machine, like many other real-
world protocols, proves to be rather complex as it deals with
establishing a secure transport, performing user authentica-
tion, and opening up multiplexed, flow-controlled channels
to transmit data.

Problem 3: Internet protocols often have complex state
machines which servers must implement accurately, safely
and efficiently.

Our complete SSH server code is too large to formal-
ize without a great deal of effort and complexity [8]; rather,
we seek a mechanism which allows critical operations (such
as sending and receiving packets) to be abstracted out and
analyzed separately. OpenSSH uses the technique ofprivi-
lege separation[10] to provide some level of protection and
enforcement of this state machine, by splitting out critical
operations into a separate process.

Privilege separation is limited in how fine-grained the
messages between the parent and child can be, due to the
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overheads of inter-process communication. We observe
that the requirement for two processes comes from the fact
that the child process cannot make a guarantee of memory
safety; that is, errors in the child can result from a mali-
cious attacker overwriting process memory. However, the
OCaml type system does provide a guarantee of memory
safety, given that foreign function bindings are safe.

Inspired by Schneider’s security automata [11], we in-
troduce the notion ofinline automataandstatecalls. Inline
automata serve two purposes: (i) they help protect a server
against attack and (ii ) they can be analysed statically against
a set of assertions. We define an OCaml automaton module,
exposing a singletick function which advances an internal
state machine (hidden from the rest of the program by the
type system). Thetick function accepts a singlestatecall
argument, which is a special data type representing some
action taken by the main program. Statecalls can be defined
to an arbitrary granularity, since the only overhead in calling
them is a single function call in the program (unlike privsep
which requires socket communication).

The introduction of statecalls into the main server source
can be done by: (i) automatically including statecalls in
generated code; (ii ) using program slicing [3] to introduce
statecalls across API boundaries; and (iii ) manual annota-
tion of statecalls in the server source code. In our imple-
mentation of SSH, we modified our packet-parsing decision
tree code generator to introduce two unique statecalls per
SSH packet (e.g. ReceiveAuthPasswordRequest
or TransmitTransportKexInit ). The result is that
for every packet transmitted or received, a unique state-
call is triggered on the inline automaton. In addition to
network packet-related statecalls, there exist “computation
statecalls” which are executed by the server when some sig-
nificant action has been taken. These are currently manually
annotated by the programmer, although we plan to use the
CamlP4 syntax-extender to provide us with convenient syn-
tactic sugar.

The SSH state machine also has a dynamic element, as
channels can be created and destroyed on the fly as part of
the protocol. The various protocol layers also operate in
parallel; for example, the transport layer can perform key
re-exchange during a data transfer. We take advantage of
this separation by allowing multiple inline automata to op-
erate simultaneously. The individual automaton can oper-
ate through: (i) specifically allowing a set of statecalls (i.e.
whitelisting); or (ii ) allowing all statecalls except a specif-
ically banned set (i.e. blacklisting). The utility of dynami-
cally spawning inline automata is extremely useful beyond
our SSH implementation—they are of use in multi-threaded
servers (an automaton per thread), and in complex protocols
allowing multiple aspects of the server to be checked in par-
allel.
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Figure 2. Overall server architecture with
statecalls and inline automata specified us-
ing SPL.

3.1 The Statecall Policy Language (SPL)

Recall that an inline automaton is a state machine which
represents a server protocol in an abstract form. Note that
a protocol state machine can be written directly by the pro-
grammer with two important drawbacks: (i) traditional pro-
gramming languages lack useful constructs such as non-
deterministic choice; and (ii ) there would be no guarantee
that any such state machine was correct.

Problem 4: A policy language to conveniently ex-
press a protocol state-machine and compile it into a non-
deterministic finite state automaton suitable for formal
analysis is required.

We define the “Statecall Policy Language”: a domain-
specific policy language which facilitates the description of
readable, maintainable and expressive policies by provid-
ing many of the features of a general-purpose programming
language (imperative programming style, functions, names-
paces) together with new features designed to simplify the
specification of protocols.

SPL policies may be regarded as non-deterministic finite
state automata, specified in a familiar ’C’-like syntax. State-
calls are represented by capitalized identifiers while semi-
colons are used for sequencing. Non-deterministic choice
is written using a special construct “either/or ” similar
to Occam’sALT. Out-of-band messages are handled using
a construct calledalways allow while multiple in-
dicates that a block may be repeated zero or more times.
Finally, theduring/handle construct allows for excep-
tion and signal handling. Due to space constraints, we can-
not formally specify SPL here; instead we devote the re-
mainder of this section with an example of how it can be
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applied to the SSH transport layer. Consider the following
simplified SPL snippet taken from our SSH server:

function transport (bool encrypted, bool serv_auth)
{

always_allow (Receive_Debug, Receive_Ignore) {
multiple {

L1: either {
Transmit_Transport_KexInit;
Receive_Transport_KexInit;
either {

Expect_DHGroupSHA1;
Receive_DHGroup1SHA1_Init;
Transmit_DHGroup1SHA1_Reply;

} or {
Expect.DHGexSHA1;
Receive.DHGexSHA1_Request;
Transmit.DHGexSHA1_Group;
Receive.DHGexSHA1_Init;
Transmit.DHGexSHA1_Reply;

}
Transmit_Transport_NewKeys;
Receive_Transport_NewKeys;
encrypted = true;

L2: } or (encrypted && !serv_auth) {
Receive_Transport_ServiceAuth;
Transmit_Transport_ServiceAuthOK;
serv_auth = true;

}
}

}
}

function start_transport()
{

during {
transport(false, false)

} handle {
Signal.QUIT;
Transmit.Transport.QUIT;

} handle {
Notify.KeyExchangeFailure;
Transmit.Transport.QUIT;

}
}

The transport layer first exchanges messages to set up an
encrypted channel between two hosts. Consider the code at
labelL1 . Initially, both client and server exchange key ex-
change packets which contain the capabilities of both sides.
The choice of key exchange algorithm is determined from
these packets; a typical choice being Diffie-Hellman with
a fixed public group. Afterwards, both sides derive their
shared secret, and signal the intent to use it for subsequent
traffic via a “new keys” message. After this, the channel
is encrypted, and theencrypted state variable is set to
true .

Once the encrypted channel has been set up, the client
can then request access to the authentication service. The
server must check two things: (i) that the channel is en-
crypted, preventing passwords being sent in cleartext; and
(ii ) that the authentication service is never activated more

than once. Complicating matters further, at any time either
end can request a renegotiation of encryption key. The code
at labelL2 handles these concerns.

At any point the server can receive a UNIX signal
(e.g. requesting clean shutdown); this is represented in
SPL by the during/handle clause in the function
start transport .

3.2 Model Checking SPL policies

Protocol specifications often contain informal assertions
about the operation of the protocol which the programmer
must ponder carefully while writing the server. For ex-
ample, the SSH protocol specification includes three asser-
tions: (i) authentication never begins before the transport is
encrypted (ii ) channels will never be opened before authen-
tication is successful; and (iii ) a request to open a channel
will always result in a success, failure, or connection ter-
mination being sent back. Since implementation code is
often complex, ensuring these assertions are never violated
is a very difficult task. Previous implementations of SSH
have had bugs where clients could bypass public key au-
thentication and directly open shells or turn off encryption
altogether by sending a server packets it did not expect.

Problem 5: The programmer needs to be able to for-
mally express high-level assertions about security-relevant
behaviour of the program.

Recall that our SPL compiler converts an SPL policy
specification into an OCaml automaton which dynamically
checks that the policy is followed. Since an SPL policy is
fundamentally a non-deterministic finite state automaton it
can also be compiled into a language such as PROMELA,
suitable for model-checking. Once in PROMELA, the pro-
grammer can specify and mechanically verify (using the
model-checker SPIN [4]) assertions about the server writ-
ten in the temporal logic LTL. Therefore informal assertions
from the protocol spec like those mentioned earlier can be
written formally and automatically verified. For example,
consider the following LTL formula:

encrypted ⇒ �encrypted

The formula simply states that if the variableencrypted
is ever true then it must remain true forever i.e. that encryp-
tion can never be turned off.

In addition to the PROMELA output, SPL can also gen-
erate DOT graphs of the state machine (see Figure 2), suit-
able for output as Postscript or HTML. These graphs serve
as useful documentation in the style ofliterate program-
ming, allowing the programmer to see how the server be-
haves without looking directly at any source-code.
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4 Related Work

Producing secure software has long been an active focus
of research. Much work has focused on ensuring the in-
tegrity of existing source code, often written in C. For exam-
ple, Systrace[9] andModel Carrying Code[12] are exam-
ples of systems which allow policies to be written govern-
ing the system call behaviour of existing programs. While
these systems have the advantage of working with existing
application binaries, we are more interested in building de-
pendable applications from scratch.

Systrace [9] limits thesystem calls(i.e. calls from the
application to the OS kernel such as open a file or bind a
socket) made by an application. Applications which vio-
late the installed policy may have their system calls blocked
or may be suspended or killed. Policies can be created ei-
ther in advance of execution or may be interactively with
the help of the user. The main limitation of systrace is that
it operates entirely at the level of system calls, while the
system proposed here operates at any arbitrary granularity.
For example, SPL policies for an SSH server may operate
in terms of actual protocol messages while a systrace policy
for the same system will only ever see repeated calls to the
system callread returning encrypted blobs of data.. SPL is
built on our earlier work in system call protection [6]; how-
ever, it has been extended with conditional guards and more
constructs to facilitate the construction of complex inline
automata.

Privilege separation[10] is a design technique which
splits a server into two components: a small monitor pro-
cess running with root privileges and a larger process with
everything else. Inline automata and privsep are comple-
mentary techniques, since privsep allows for coarse OS-
level permissions protections (e.g. process UIDs and ch-
root), while inline automata offers fine-grained policy en-
forcement.

The use of statically typed languages such as OCaml to
create high-performance servers has also been gaining cre-
dence in recent years. The FoxNet project [2] implemented
the TCP/IP networking protocol stack by using the Stan-
dard ML (SML) type system. However, since their im-
plementation was in user-space, it is difficult to draw per-
formance comparisons against the commonly used kernel-
based networking implementations. Web servers have also
been written in Haskell [7] and Occam [1]; our techniques
such as inline automata take advantage of the underlying
safety of these languages to provide even more protection
against programmer errors.

5 Future Work and Conclusions

We started this position paper by introducing a chal-
lenge: to create a dependable and analyzable server that

matches the stringent performance and portability require-
ments of a current best-of-breed implementation. We de-
cided to implement an SSH server to meet this challenge.
Did we succeed? The answer is—almost. Our prototype
server implementation currently clocks in transfer rates at
around 75% of the speed when using OpenSSH. Of course,
our implementation does guarantee protection against ex-
ploits such as buffer overflows, integer overflows, and logic
bugs which are covered by the SPIN LTL assertions.

In addition, the implementation experience has been
valuable, and we have identified two key techniques which
significantly sped up our implementation and have much
broader appeal across different services. Firstly, the packet-
parsing decision tree makes programmers more formally
specify how they plan to handle network packets, and auto-
matically generates statically type-safe code to allow for the
safe marshalling and unmarshalling of network traffic. Sec-
ondly, inline automataallow the embedding and enforce-
ment of light-weight state-machines within a server process
to an arbitrary granularity and degree of parallelism chosen
by the programmer. Finally, ourStatecall Policy Language
allows these automata to be specified using a powerful, ex-
pressive, ’C’-like syntax, and also has also shown that it is
feasible to model check the automaton by specifying high-
level LTL assertions.

Moving forward, we are confident that we can com-
pletely succeed at our performance challenge while inte-
grating more formal methods. Interesting areas still to be
examined are: (i) the effect of garbage collection in a high-
performance server; (ii ) whether SPL can be a complemen-
tary solution to privilege separation (by adding in language
primitives to automate the privsep process); or (iii ) combin-
ing multiple parallel automata into a theorem prover such
as HOL. We expect to release a first version of our SSH
server soon under a BSD-style license, and hope to gather
feedback from the dependable systems community on fur-
ther practical techniques we can use to improve the perfor-
mance, dependability and security of our implementation.
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